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[1] Glacial occupation of alpine valleys results in a distinct signature in the long-valley
profile, including steepening of the profile in the headwaters, flattening at lower
elevations, and a step in the profile at the convergence of headwater tributaries. We present
analytic results for glacial erosion patterns by making the following assumptions: (1) the
initial profile is linear, (2) the width of the valley is uniform, (3) the annual mass
balance varies linearly with elevation, (4) the glacier at any time is quasi-steady, (5) the
erosion rate is proportional to ice discharge per unit valley width, and (6) glacial erosion
rates far exceed fluvial erosion rates. A steady glacier under these conditions would
erode a parabolic divot in the longitudinal valley profile, with its maximum depth
coinciding with the down-valley position of the equilibrium line altitude (ELA). The
calculated flattening of the valley floor down valley of the ELA and the steepening of it
up valley captures the essence of the glacial signature. When a reasonable probability
distribution of ELAs is allowed, the predicted erosion peaks at 30–40% of the
down-valley distance to the glacial limit, and the pattern merges smoothly with the steeper
fluvial profile downstream of the glacial limit. Profiles of mass balance that are capped
at a maximum value produce shorter glaciers and a slight asymmetry in the expected
erosion pattern. Only when we mimic the tributaries of glacial headwaters by specifying a
valley width distribution do we obtain the upper step observed in many valley profiles.
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1. Introduction

[2] Alpine glaciers are efficient erosional engines that
occupy both former stream channels and valley walls.
Therefore they overprint fluvial valleys with a signature
of glacial advance across the entire alpine landscape. The
Plio-Pleistocene climate [e.g., Raymo, 1994] has driven
dozens of cycles of glacial advance and retreat in alpine
valleys that have shaped a landscape very different from
those in which rivers are the main erosive agent, and from
the landscape that existed before glaciation became com-
mon in the Ice Age. Our goal is to understand the erosional
legacy of glacial advances and retreats in alpine valleys in
terms of simple characteristics of glaciers and their differ-
ences from rivers as erosional agents.
[3] Herein, we formalize and build upon the conceptual

models of previous researchers [e.g., Penck, 1905; Sugden
and John, 1976] that provide an intuitive understanding of
how climate, topography and glacial erosion result in the
gross characteristics of longitudinal valley profiles. The

development of an analytical/numerical model is crucial to
testing the plausibility of proposed geomorphic formation
mechanisms. As will be shown, in a model based upon ice
conservation, simple expressions for topography and mass
balance lead to analytical solutions for the steady state
pattern of ice discharge. We assume this ice discharge is a
proxy for the long timescale pattern of erosion that stamps
the glacial fingerprint over the fluvial morphology. This
model allows us to see beyond the limits of simple climates,
simple topography, and short timescales inherent to con-
ceptual models by enabling us to explore quantitatively the
long timescale pattern of valley erosion while acknowledg-
ing both the variability of climate, and the complexity of the
valley geometry. Furthermore, the ability to predict the
progression of morphology over long timescales permits
testing (and refining) of our initial assumptions and sim-
plifications against observations of the real world.
[4] We focus on the longitudinal profiles of glaciated

valleys, which depart significantly from their smooth con-
cave-up fluvial counterparts [e.g., Penck, 1905; Sugden and
John, 1976; MacGregor et al., 2000]. Longitudinal profiles
are commonly steepened in their headwaters and reduced to
lower slopes in the reaches near the terminal moraines that
mark the glacial limit (Figures 1 and 2). Some flattened
reaches are overdeepened, and are now occupied by either
lakes or their sediment-filled equivalent. In addition to this
first-order increase in profile concavity, glacial long-valley
profiles often show significant steps not seen in fluvial
valleys; while some steps clearly coincide with variations in
rock resistance, prominent steps in the profile often coincide
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with tributary junctions [Penck, 1905; MacGregor et al.,
2000]. Where headwater valleys coalesce, the character of
the valley floor commonly changes from a knobby and
seemingly disorganized surface to a smooth U-shaped
conduit down valley (Figure 2). These two morphologically
distinct regions are connected by a step in the longitudinal
profile that can be many tens of meters in amplitude
(Figures 1 and 2). This feature may be analogous to the
‘‘trough head’’ in valleys draining ice caps, where there
appears to be an abrupt transition from ice sheet flow to ice
streaming. Discussing this feature, Sugden and John [1976,
p. 184] suggest that it may reflect a change in ‘‘basal ice
conditions which determine whether or not the ice slips over
the bed.’’
[5] Present glaciers and paleoglaciers reconstructed from

moraine patterns typically have more than half of their
surface area at elevations above the equilibrium line alti-
tude, or ELA, which separates the zone of net ice accumu-
lation above from the zone of net ice ablation below. The
ratio of accumulation area to total glacier area, AAR
(‘‘accumulation area ratio’’), is commonly 0.5–0.8 [Meier
and Post, 1962], with a strong tendency for the middle of
this range, 0.65 [Porter, 1975, 1977]. This reflects the
hypsometry of the glaciated basin and the dependence of
local mass balance (accumulation minus melt) on altitude.
In plan view, alpine glaciers display a round-tipped, cauli-
flower-like branching pattern. Ice occupies a network of
headwater valleys that coalesce into a main trunk stream.
Part of the natural variability of the AAR may be attribut-
able to the reduction of melt by debris cover that differs
among ablation zones. We seek to understand the origin of
the observed relatively narrow range of AAR values.
[6] That glaciers leave a signal in the landscape that is

fundamentally different from that left by rivers was first

emphasized by Penck [1905]. Where rivers carve the
landscape, valleys display smooth concave-up longitudinal
profiles, a geometry Penck dubbed the normal curve. River
discharge monotonically increases downstream as it gathers
water from hillslopes and tributaries. A river’s ability to
erode rock is most often assumed to depend upon both
water discharge and slope of the bed. As the water discharge
increases downstream, the slope required for incision of

Figure 1. (top) Plan view of glacial footprint showing
typical cauliflower-shaped headwaters and tributary junc-
tions. The equilibrium line altitude (ELA) separates the
accumulation zone above from the ablation zone below. The
bedrock surface in the headwaters is commonly knobby, but
that below the main valley junctions is smoother and U
shaped in cross section. (bottom) Longitudinal valley profile
along A-A0 showing initial fluvial profile (gray) and present
valley profile (black) showing significant steps correspond-
ing to the coalescence of headwater valleys and to a
tributary junction farther down valley.

Figure 2. Photos of Fourth of July Valley, Front Range,
Colorado, showing longitudinal profile of the glaciated
portion of the valley and views (a) up valley and (b) down
valley from a vantage point marked as ‘‘x’’ on the profile.
Gray angles show approximate view angle for each
photograph. Profiles of three headwater tributaries are
shown, with major steps as the valleys join. Tributaries
farther down valley are not shown; 0 km corresponds to
junction with South Platte River on the Great Plains. Cross-
valley morphology changes significantly at �65 km,
changing from small-scale bedrock knobs above to smooth
and U shaped below.
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rock declines. This results in the smooth concave-up longi-
tudinal profile characteristic of fluvial valleys. One key
difference between glaciers and rivers is that glaciers end
within the alpine landscape, but rivers do not. The discharge
of ice does not monotonically increase down valley, but
instead increases to a maximum midglacier, and then
declines to zero at the glacier terminus. Insofar as ice
discharge is a proxy for erosion rate, as is frequently
postulated, a fluvial valley that becomes occupied by ice
should flatten downstream of an ice discharge maximum
and steepened in the headwaters.
[7] This basic explanation for the transformation of a

river profile to a glacial one was put forth in a remarkable
paper by Penck [1905]. He proposed what he called the law
of cross sections: the cross section of a glacial trough is
adjusted to carry the ice supplied by the mass balance of ice
up valley of it. He reasoned that since the surface of the
glacier slopes monotonically down valley, the depth and
width of the glacial trough must increase to a maximum in
midglacier and decay to zero at the terminus. In addition, he
concluded that this should flatten and in some instances
overdeepen the profile, resulting in the famous lakes that
bound the Alps north and south. For the same reasons,
Penck argued, there should be steps in glacial valley floors
at tributary junctions, as the cross sectional area of the
glacier must increase to accommodate the added discharge
of ice. A further corollary to the law of cross sections is that
because the tributary valleys discharge less ice, they will
hang above the trunk stream: while the ice surfaces of trunk
and tributary glaciers must smoothly connect, the smaller
cross section of the tributary will result in a hang of its
channel floor above that of the trunk valley. Sugden and
John [1976, pp. 182, 183] echoed Penck’s principal result,
stating that ‘‘glacial troughs are equilibrium forms related to
the amount of ice discharged’’ and that ‘‘the ‘overdeepen-
ing’ of a glacial trough compared to a river valley is
explained by the relative position of the equilibrium line
along a trough which usually determines the location of the
zone of greatest ice discharge.’’
[8] Although the transformation from the fluvial

V-shaped cross-valley profile to the glacial U shape has
been addressed in numerical models [Harbor et al., 1988;
Harbor, 1992], the evolution of the longitudinal profile has
seen less attention. Oerlemans [1984] was the first to place
this problem in a quantitative context. More recently, using a
numerical ice dynamics model with a prescribed mass
balance profile, MacGregor et al. [2000] reproduced valley
floor flattening, explained the hanging of tributary valleys by
the discrepancy of long-term ice discharge in the tributary
and trunk valleys, and explained steps in the main valley
floor by the additional long-term discharge provided by the
tributary valley. All of Penck’s observations were repro-
duced. As the numerical simulations reported byMacGregor
et al. [2000] required time steps equivalent to several days, it
was difficult to explore a wide range of mass balance
formulations, valley geometries, or specific climate time
series with the several hundred thousand year durations
needed to investigate longitudinal profile evolution.
[9] Our strategy differs from that of MacGregor et al.

[2000] in that we calculate ice discharge directly by assum-
ing that the glacier is in steady state with respect to the
prescribed climate; we thereby sidestep the short timescale

ice dynamics required to achieve and maintain this condi-
tion. Our model can therefore remain analytic. We begin
with the simplest case, and then add complexity designed to
mimic various aspects of reality with the goal of learning
how this additional reality influences basic features of
longitudinal valley profiles.
[10] We fully acknowledge that the processes of glacial

abrasion, quarrying and subglacial fluvial erosion are respon-
sible for landscape modification by glaciers and that the
physics behind their spatial and temporal distribution (1) is
probably nonlinearly related to sliding speed, (2) displays
coupling among processes, and (3) is linked to the seasonal
and even daily evolution of subglacial drainage systems that
can incite significant water pressure fluctuations at the bed.
As our understanding of these processes and their interactions
remains incomplete, and as the timescales over which these
vary are many orders of magnitude shorter than those over
which valley morphology evolves, we employ a strategy in
which a set of simplifying assumptions allow us to explore
valley evolution over relevant timescales. The modeling
effort of MacGregor et al. [2002] suggests that long-term
ice discharge over a point is a rough proxy for glacial erosion
at that point. In addition, the assembly of sediment yields from
glaciated catchments by Hallet et al. [1996] suggests that ice
discharge can serve as a proxy for erosion rates when
averaged over the footprint of the glacier. Both Penck
[1905] and Sugden and John [1976] anticipated these results,
arguing that the pattern of erosion was set by the pattern of ice
discharge. Here we sidestep the specific erosion processes,
and begin by assuming that local specific ice discharge
(discharge per unit width) is an adequate proxy for local
mean erosion rate over long timescales. Our focus is limited to
the roles of climate variability and of valley geometry in
setting the long-term pattern of ice discharge, which, if this
may be used as a proxy for erosion, transforms longitudinal
valley profiles from their original fluvial forms. We seek
simple quantitative expressions of the qualitative ideas put
forth by Penck [1905] and Sugden and John [1976].

2. Problem Setup

[11] We require an initial valley profile, and a climate
defined by a spatial distribution of mass balance, from
which a pattern of ice discharge may be calculated for the
steady case.

2.1. Initial Condition

[12] For simplicity we consider a linear valley profile as
the initial condition (Figure 3):

z ¼ zmax � Sx ð1Þ

where z is the elevation, S is the slope, x is down-valley
distance and x = 0 the valley head. Although fluvial profiles
are concave up, declining in slope with distance down-
stream, we start here because two parameters are needed to
describe a convex profile, but only one is needed to describe
a linear profile.

2.2. Mass Balance Distribution

[13] In order to define the climate the glacier experiences,
we seek a distribution of total annual mass balance of ice
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within the valley. This is the sum of the accumulation by
precipitation, and the loss by melt. In many alpine glaciers
the distribution of annual mass balance can be described
well by a simple function of elevation [e.g., Meier at el.,
1971; Oerlemans and Fortuin, 1992; Paterson, 1994].
Many show an essentially linear increase in the local mass
balance, b, with elevation, z, defined by the gradient of
balance with elevation, g, and the elevation at which the
balance crosses zero, the equilibrium line altitude, denoted
here by zela:

b ¼ g z� zelað Þ ð2Þ

Unless otherwise noted, this linear mass balance function
was employed.

2.3. Steady State Pattern of Ice Discharge

[14] Given the distribution of annual mass balance with
elevation, b(z) in (2), and the initial profile in (1), one can
transform b(z) into b(x), the mass balance as a function of
distance down valley. Conservation of mass (in this case, of
ice) in a representative valley-spanning column of width W
requires that the rate of change of ice cross section, HW,
include meteorologically driven loss or gain of ice through
the top of the column, bW, and the divergence of ice flux
through the up-glacier and down-glacier sides of the column
(Figure 3). In 1-D, this becomes

@ HWð Þ
@t

¼ bW � @Q

@x
: ð3Þ

For a steady state glacier the left hand side equals zero, and
the divergence of ice flux must equal the volume of ice
gained or lost through the top of the column:

dQ

dx
¼ bW : ð4Þ

The steady state pattern of ice discharge, Q(x) becomes:

Q xð Þ ¼
Zx
0

Wbdx: ð5Þ

The location of the glacial terminus lies at the x position
where the ice discharge down valley of the ELA vanishes.
Using analytical and numerical solutions of this equation,
we explore the effects of the climate through b(x) and of
valley geometry through W(x).
[15] Here the assumption of steady state requires that we

ignore transient response to high frequency climate varia-
tions. Typical response times of valley glaciers to climate
change are on the order of 100 years [Johannesson et al.,
1989; Harrison et al., 2001]. Our focus is on evolution of
longitudinal valley profiles due to mass balance profiles that
vary on timescales of thousands to hundreds of thousands of
years. Thus this assumption that the glacier is in steady state
with the climate forcing is reasonable.

2.4. Accumulation Area Ratio

[16] Armed with the geometry of the valley, represented
by W(x), the mass balance profile, represented by b(x) from
which the x position of the ELA is known, and the pattern
of ice discharge from which the glacial terminus position,
xterm, is assessed, we can calculate the accumulation area
ratio:

AAR ¼

ZxELA
0

Wdx

Zxterm
0

Wdx

ð6Þ

in which the numerator is the area of the glacier above the
ELA, and the denominator is the total area of the glacier.

3. Steady Climate, Simple Valley of Uniform
Width

[17] We first consider the pattern of ice discharge in a
valley with uniform width, W = Wo, a uniform slope = S,
and a climate characterized by a linear mass balance profile
captured in (1) (Figure 4). Integrating (5) yields the ice
discharge:

Q ¼ Wog zmax � zelað Þx� Sx2=2
� �� �

ð7Þ

This is parabolic, with a peak at the x position correspond-
ing to the ELA (xela = (zmax � zela)/S). The terminus position
xterm may be calculated simply by solving for where the ice
discharge declines to 0:

xterm ¼ 2 zmax � zelað Þ
S

ð8Þ

The down-valley location of the terminus is twice the distance
of the x position of the ELA (Figure 5); the AAR is therefore
0.5 and the flux of ice Q is symmetric about the ELA.

Figure 3. Schematic diagram showing both the linear
valley profile and linear mass balance profile employed in
our analysis. The steady state model glacier has a thickness
profile, H(x), ice discharge pattern, Q(x), and terminus
position, xterm, that reflect the position of the ELA. Ice
columns in accumulation zone, x < xela, and ablation zone,
x > xela, are also shown; in steady state the gradient in ice
discharge must match the meteorologically set local mass
balance.
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[18] As argued in the section 1, ice discharge has been
argued to be a proxy for the rate of glacial erosion. If this is
correct, the maximum erosion rate should occur at the ELA
(Figure 5). Down valley of this maximum, the erosion rate
should decline rapidly to zero at the terminus, beyond which
erosion would be dictated instead by fluvial processes. The
glacier would take a parabolic divot out of the original
longitudinal profile. The first-order effect is therefore valley
floor flattening down valley of the x position of the ELA
through time, and valley floor steepening up valley of it.
This is indeed the essential signature of valleys once occu-
pied by glaciers, and reproduces the principal result from the
numerical glacial modeling presented by MacGregor et al.
[2000]. As shown here, this is an extremely robust result,
unrelated to the glacier mechanics, relying only on conser-
vation of ice under the most general conditions of climate
and valley geometry. These simple assumptions and the
resulting calculations, however, fail to reproduce at least
two fundamental observations about real glacial valleys.
First, although the valley near the headwaters is steep, the
commonly observed step in the valley profile is not repro-
duced. Second, the distribution of ice represented by the
analytical result is symmetrical about the ELA; as much area
lies above as below it, and the calculated accumulation area
ratio, AAR = 0.5, not the commonly observed 0.65. In order
to address these issues, we add elements of reality to this
model one at a time.
[19] 1. We first explore the effect of a more realistic mass

balance profile that incorporates a maximum balance, rather
than a linear increase, at high elevations.
[20] 2. Next we explore the impacts of variability in the

climate, assuming various forms for the probability density
functions (pdfs) of the ELA.
[21] 3. We then acknowledge that the effective width of

real glacially occupied valleys varies dramatically in the

headwaters, i.e., W = f(x) and cannot be assumed to be a
constant, W = Wo.
[22] 4. Finally, we explore briefly different erosion rules,

including nonlinear dependence on discharge per unit
width.
[23] As we show below, although each of these steps

takes us closer to real glaciers and real glacial valleys, the
simple analytic result given by (7) and (8) and shown by the
black line in Figure 5 captures the essence of the glacial
valley profiles.

4. Effect of Mass Balance Profile Shape

[24] It is often observed [e.g., Meier et al., 1971;
Oerlemans and Fortuin, 1992] that the gradient in mass
balance profile g = db(z)/dz is lower at the highest eleva-
tions than along much of the glacier [e.g., Furbish and
Andrews, 1984]. To consider an extreme form of this
elevation dependence, we assume that above some elevation
zm the mass balance is constant (dashed line in Figure 4):

b ¼ bmax; z > zm

b ¼ g z� zelað Þ; z < zm

ð9Þ

The steady state ice discharge, again from (5), becomes

Q ¼ Wobmaxx; x < xm

Q ¼ Wobmaxxm þWog zmax � zelað Þ x� xmð Þf � S x2 � x2m
� �

=2
� ��

;

x >¼ xm ð10Þ

where xm is the down-valley position at which the mass
balance first drops below bmax (the x position of zm),

xm ¼
zmax � bmax

g
þ zela

� �
S

: ð11Þ

For this case, ice discharge increases linearly down valley in
the headwaters as the contributing area increases before

Figure 4. Mass balance profiles, b(z), each with ELA =
2500 m, linear profile with gradient g = 0.01 (gray), and
mass balance profile with a maximum for elevations above
2700 m (dashed).

Figure 5. Ice discharge patterns for two cases, both in
simple linear valley with uniform width, normalized using
the terminus position, 2((zmax � zela)/S, and maximum ice
discharge at the ELA for the linear case. Solid line, linear
b(z) and no cap; dashed line, same gradient and ELA but
capped (as shown in Figure 4). Both peak at the same
location in the valley, at the down-valley position of the
ELA. Terminus positions (arrows) reflect where the ice
discharge goes to zero.
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becoming parabolic at x 	 xm (dashed line in Figure 5).
Because less ice accumulates than for the case represented
by (7), the terminus position extends a shorter distance
down valley, and the peak discharge is reduced. The
asymmetry in the mass balance is also reflected in
accumulation area ratio. In the case of a uniform valley
width, equation 6 becomes AAR = xela/xterm. The AAR is
now greater than 0.5, and increases as the elevation band
experiencing the capped mass balance expands. For the case
illustrated by the dashed line in Figure 5, AAR = 0.56.

5. Variability of Climate

[25] Climate varies during erosion of large-scale glacial
features, causing advances and retreats of glaciers. This can
be captured as variability in the ELA. As we are interested
only in the long-term integrated pattern of ice discharge and
erosion, we avoid specifying a history of the ELA, but turn
instead to its probability distribution. We consider three
simple probability distributions of ELAs. We explore first
the mathematically simplest distribution, a uniform proba-
bility of finding the ELA at any altitude between Emin and
Emax. We then explore the effect of a sinusoidally varying
ELA, and finally a Gaussian distribution, which is inspired
by the distribution of d18O in the Plio-Pleistocene deep-sea
record [e.g., Zachos et al., 2001].
[26] In all cases, we seek the spatial pattern of long-term

average ice discharge, represented by

Q xð Þ ¼
Z
E

Q x;Eð Þp Eð ÞdE ð12Þ

where p(E) is the probability density function (pdf) of the
ELA, E, and Q(x,E) is the instantaneous pattern of ice
discharge corresponding to a given ELA, as captured in (7).

5.1. Uniform Distribution of ELAs

[27] A uniform distribution of ELAs can be described by
the pdf

p Eð Þ ¼ 1

Emax � Emin

ð13Þ

There are two parts of the profile that must be treated
separately (Figure 6), the upper part of the valley always
occupied by a glacier (x < xmin), and the lower part where
for some of the time no glacier is present (x > xmin). For the
former region, the integral becomes:

Q ¼
Z1
0

Q x;Eð Þp Eð ÞdE

¼ gWo

Emax � Emin

ZEmax

Emin

zmax � Eð Þx� Sx2

2

� 	
dE for x < xmin ð14Þ

The solution is

Q x; x < xminð Þ ¼ gWo

DE
x2 � SDE

2


 ��
þ x zmDE þ E2

min

2
� E2

max

2


 �	
ð15Þ

The solution appropriately collapses to the steady climate
case (equation (7)) when DE = Emax � Emin vanishes.
[28] Down valley of the position xmin, calculation of the

long-term discharge requires acknowledging that the mini-
mum glacier extends only to xmin (Figure 6). This is
accommodated by changing the maximum limit of integra-
tion to the ELA that would generate a glacier terminating at
the position x: Ec = zmax � (xS/2). Higher ELAs do not
contribute ice past this position:

Q xð Þ ¼
Z1
0

Q x;Eð Þp Eð ÞdE

¼ gWo

Emax � Emin

Zzmax�xS=2

Emin

zmax � Eð Þx� Sx2

2

� 	
dE ð16Þ

Evaluation of this integral yields a third-order polynomial
equation in x:

Q x; x 	 xminð Þ ¼ gWo

DE
x3

S2

8


 �
� x2

S

2

�
zmax � Eminð Þ

þ x
1

2
zmax � Eminð Þ2

	
ð17Þ

A plot of the solution given by (15) and (17) (Figure 7)
shows that the essence of the ice discharge pattern derived
for a steady climate remains intact. Assuming erosion
increases with ice discharge, climate variability results in a
smoothing of the transition to the fluvial profile beyond the
maximum glacier terminus. The symmetry of the pattern is
now broken, however, as larger glaciers corresponding to
ELAs below the mean ELA contribute more to the long-

Figure 6. Schematic illustrating the two domains in the
solution for ice discharge with ELAs uniformly distrib-
uted between Emin and Emax. Minimum and maximum
size glaciers corresponding to highest and lowest ELA are
shown as solid and dashed lines. For all locations
between the headwall at x = 0 and the terminus of the
minimum length glacier, xmin, there is always a glacier,
and equation (16) applies. For all locations beyond xmin,
some fraction of the time is spent with no glacier, and
equation (18) applies.
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term average ice flux and erosion than do their smaller,
higher ELA counterparts.
[29] In the case depicted in Figure 7, for which the

ELA always lies below the peak elevation of the valley,
the location of the maximum ice discharge roughly
coincides with that of the glacier corresponding to the
mean ELA, but we cannot expect this to be the general
case in the face of variable climate. What happens to the
pattern we have identified when some portion of the ELA
distribution lies above the peak of the topography, i.e., if
there are times in the history of the valley in which
glaciers do not exist? This effectively truncates the
distribution of ELAs at zmax. Consider the case in which
for part of the time the ELA lies above the peak of the
topography. Glaciers still flick their tongues down the
valley during excursions of the ELA below zmax. Corre-
spondingly, as the distribution of ELAs begins to exceed
the maximum elevation of the valley, equation 18 applies
along the entire valley, because xmin = 0. We can then
evaluate formally the location of the peak ice discharge
by taking dQ/dx = 0 in equation 18. This yields the
prediction that when the distribution of ELAs is uniform,
and some portion of the distribution lies above the peak
elevation of the valley, the peak discharge and hence the
peak erosion ought to occur at x ¼ 2

3

zmax�Eminð Þ
S

. This is two
thirds of the distance from the divide to the location of the
peak discharge associated with the glacier corresponding
to the lowest ELA, and hence one third of the distance
from the divide to the terminus of the longest glacier. One
can see in Figure 7 that this is approximately the case also
when the maximum ELA lies below zmax, indicating that
the discharge contribution from these small glaciers (high
ELAs) is negligible.

5.2. Harmonically Varying ELA

[30] For a harmonically varying ELA,

E ¼ E þ DE sin wtð ÞÞ ð18Þ

where E is the mean ELA and DE the (half) amplitude of its
variability. The probability density function of ELA is:

p Eð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE2 � E � E

� �2q ; E � E
�� �� < DE ð19Þ

and is zero outside of these bounds (Figure 8). The
probability distribution reaches its maximum for ELAs at
either its maximum or minimum height, where it changes

Figure 8. Probability density functions (pdfs) of ELA
used in the analytic solutions for ice discharge. ELA is
nondimensionalized with the difference between maximum
and mean ELA for uniform and harmonic distributions and
with 2s for Gaussian distribution. The harmonic history
yields a pdf that peaks at the minimum and maximum ELA,
while a history that is normally distributed about the mean
spends the least time at the minimum and maximum ELA.

Figure 7. Analytic solution for ice discharge patterns resulting from steady state glaciers driven by a
simple mass balance function, in a linear valley profile, and a uniform distribution of ELAs. Maximum
and minimum glaciers corresponding to minimum and maximum ELAs, respectively, are shown along
with the glacier discharge expected from the average ELA and a long-term average resulting from a
uniform distribution of ELAs between maximum and minimum. The symmetry is broken when a
distribution of ELAs is permitted. Maximum discharge occurs down valley from that corresponding to
the mean climate, at roughly one third of the glacial limit (the maximum terminus position), and smoothly
tapers to zero discharge there. Distance and ice discharge are normalized using glacier length and ice
discharge associated with the lowest ELA.
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slowly; the ELA lies near its average value for only short
intervals, because it crosses that level quickly. The
sinusoidal case promotes more erosion down valley than
in the uniform case (Figure 9), because the large glaciers
corresponding to the lowest ELA spend more time near their
maximum extent than in the case of uniformly distributed
ELAs (Figure 8).
[31] Although we have focused on the pdf of the ELA, in

Appendix A we cast the problem in the time domain and
determine the expected pattern of erosion over a sinusoidal
history. The two approaches yield the same result.

5.3. Gaussian Distribution of ELAs

[32] One might expect that the most appropriate distribu-
tion of ELA is normally distributed around a mean:

p Eð Þ ¼ 2ffiffiffi
p

p e� E�Eð Þ=sð Þ2 ð20Þ

For example, the pdf of d18O measured in benthic
foraminifera since 1.5 Ma [Zachos et al., 2001], a surrogate
for the volume of ice stored on land, is roughly normally
distributed (Figure 10). Again, the results are not very
different from those for the uniform distribution. The
integrated ice discharge falls off more rapidly with distance
down valley than in either the uniform or sinusoidal case, as

the probability of the lower ELAs, corresponding to longer
glaciers, declines (Figure 9).
[33] In summary, the form of p(E), representing a statis-

tical summary of climate variability, does not change the
essence of the spatial pattern of long-term ice discharge that
we discussed above. When variability of climate is incor-
porated, the pattern of long-term ice discharge and hence
the expected pattern of erosion becomes asymmetric. The
pattern of erosion is most sensitive to the structure of the
probability density function near the lowest ELA. Variabil-
ity in ELA leads to a gradual, not abrupt, decrease in long-
term ice discharge toward zero at the glacial limit. In all
cases depicted in Figure 9 the asymmetry is such that the
peak long-term discharge occurs at roughly 1/3 of the
distance to the glacial limit. We showed above that this is
formally the case when p(E) is uniform, and some portion of
this distribution lies above the head of the valley. Further
numerical exploration of the uniform p(E) case reveals that
the ratio of down-valley distance to erosion maximum to the
distance to the glacial limit declines from about 0.4 when
the full distribution of the ELA lies below the topography, to
0.33 as the ELA rises. The ratio varies even less, remaining
about 0.4, for the sinusoidal distribution. We note that this
constitutes a prediction: from valley profiles in which rock
susceptibility to erosion is uniform, and in which valley
geometry is simple, one could evaluate whether the erosion

Figure 9. Analytic solutions for long-term average discharge of ice when the ELA is distributed using
three different pdfs, each with the same mean ELA (=3400 m; DE = 400 m). Nondimensional axes were
normalized with maximum glacial extent, and maximum discharge is associated with the mean ELA
position for the case of uniform distribution of ELAs.

Figure 10. Marine isotopic record for last 1.5 Ma [after Zachos et al., 2001] and a histogram of it. The
distribution is roughly symmetric and appears to be normally distributed.
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maximum occurs roughly 1/3 the way from the headwall to
the terminal moraine at the glacial limit.

6. Effect of Nonuniform Valley Width

[34] Despite a low vertical gradient in accumulation rate
at high elevations, ice can accumulate faster there than we
have assumed because the fraction of area covered by ice is
maximum near the head of a valley glacier system. All
drainage basins are composed of a network of valleys that
branch up valley. The occupation of such a network by
glaciers results in a round-edged cauliflower-like plan view
of the glacier footprint. The distribution of effective valley
widths as a function of elevation is generally reported in
terms of a hypsometric curve, the cumulative distribution of
the area occupied by glaciers above a given elevation. For
our purposes, we need instead the dependence of valley
width on elevation, W(z), which we then transform into a
function of distance down valley through knowledge of z(x).
As shown by the area distributions of Norwegian glaciers
(Figure 11), which can be translated into width distributions
with a knowledge of the elevation increment used, a general
function that can represent the width distribution is:

W ¼ Wo 1þ j
x

x*

 !m

e
� x

x
*

 !
: ð21Þ

For these glacial valleys, the exponent m is near 4, and the
length scale x* is on the order of 1 km to a few kilometers.
Here the constant j determines the importance of the
tributary widening in the headwaters, x* determines the
down-valley position of the maximum width and tapering of
width beyond it, and m controls the shape of the upstream
expansion of width. This pattern sums a uniform width Wo,
with a general form of the gamma function, (x/x*)me�(x/x*),
and collapses to the uniform width case discussed above if
we take j = 0.

[35] Incorporating the width function represented by (21)
into the calculation of the expected steady state ice dis-
charge for a linear valley with the linear mass balance
profile from (5) yields

Q ¼ g

Zx
0

zmax � Sxð Þ � zela½  Wo þ jWo x=x*

� �m
e
� x=x

*

� �" #
dx

ð22Þ

This can be evaluated analytically:

Q ¼ Qu þ C þ gjWo zmax � zelað Þ
x*
m

e
�x=x

*
Xm
r¼0

�1ð Þr

� m!xm�r

m� rð Þ! �1=x
*

� �rþ1
� SgjWo

x*
m

e
�x=x

*
Xmþ1

r¼0

�1ð Þr

� mþ 1ð Þ!xmþ1�r

mþ 1� rð Þ! �1=x*

� �rþ1
ð23Þ

where Qu is the solution for the uniform width case,
equation (7). The requirement that the ice discharge Q = 0 at
the top of the valley (at x = 0) sets the constant of
integration:

C ¼ jWog zmax � zelað Þx
*
m!þ Sx*

2 mþ 1ð Þ!
h i

: ð24Þ

[36] The resulting pattern of ice discharge (Figure 12)
increases rapidly in the headwaters, as it includes ice from
an increasingly wider accumulation area. For any given
mass balance distribution with elevation, the peak discharge
is therefore much greater than that of a valley with uniform

Figure 12. Effect of variation in glacier width with
distance down valley. (a) Profile of valley width, following
offset gamma function. (b) Ice discharge in variable width
valley (thick line) contrasted with uniform width case. The
added width requires greater discharge at all down-valley
locations. Peak discharge occurs at roughly the same
elevation (the ELA). Beyond the location at which the
width becomes uniform the discharge follows the expected
parabolic pattern.

Figure 11. Area distribution with elevation on two well-
studied Norwegian glaciers (N, Nigardsbreen; H, Haran-
gingjokul). As the area is reported for fixed intervals of
elevation (data from Elvehoy et al. [1997]), the pattern
could be translated into one of effective glacier width versus
elevation. The best fit curves for the gamma distribution
employed in this paper are shown as well, with the power,
m, indicated.
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width Wo. The pattern of ice discharge returns to the
parabolic form downstream of the bulge in glacier width
(i.e., once the valley returns to a uniform width). Because of
the greater flux of ice past the ELA, the glacier extends a
much greater distance down valley than does a glacier in a
valley without multiple headwater tributaries.
[37] To explore the effect of valley geometry on the

expected glacial erosion pattern, we note that ice discharge
per unit width, Q/W, or ‘‘specific discharge’’ (Figure 13) is
more likely to reflect the erosion rate than is ice discharge,
as it acknowledges that ice must both speed up and thicken
to maintain the same discharge in a narrow valley. Although
ice speed is undoubtedly a yet better proxy for erosion rate,
calculation of mean ice speed would require a model for ice
thickness, as we discuss below. As j increases from 0
(uniform width case), the down-valley width asymmetry
increases, and maximum specific discharge both increases
and reaches its maximum at increasing distances down
valley (Figure 13). For a given j, the location of the
maximum specific discharge moves farther down valley as
x* increases, reflecting the fact that x* scales the location of
the convergence of headwater valleys (Figure 13). However,
the convergence weakens as x* increases, reducing the peak
in specific discharge. In short, the details of valley geometry
play an important role in setting the details of the pattern in
specific ice discharge. The locus of maximum erosion can
be shifted significantly down valley of the x position of the
ELA.
[38] A step in the valley profile near the headwaters

(Figure 12 or Figure 14) emerges, if erosion is proportional
either to specific discharge (Figures 12a and 14a) or to its

square (Figures 12b and 14b). The location of the step is
tied to the valley geometry. The step begins immediately
down valley of the maximum width (Figure 12), as high ice
discharge is made to funnel through a narrowing valley. The
step is accentuated if the erosion rule varies as a power of
specific discharge. Erosion is significantly reduced in the
headwaters above the step, where the large valley width
allows specific discharge to be low.

7. A Simulation That Considers Realistic
Conditions

[39] For comparison with real glacial valley profiles, we
include in a numerical simulation that includes all of the
elements of reality that we have addressed singly in previ-
ous cases (Figures 15 and 16). We assume an initially linear
valley, but we include a nonuniform valley width distribu-
tion (Figure 12), a mass balance profile that at any time
is linear until a cap at 2 m/yr is reached (Figure 4), and
an ELA normally distributed about a mean elevation of
3400 m, with standard deviation of 600 m. The patterns of
ice discharge for any given ELA are similar to that depicted
in Figure 12, except that the discharge is reduced in the
headwaters, resulting in a smaller peak discharge due to the
capped mass balance profile. As in the case with a Gaussian
distribution of ELA (Figure 9), the long-term mean ice
discharge (or specific discharge) is tapered near the glacial
limit reflecting the lower probability of ELAs at lower limit
of the distribution. In the headwaters, the taper, which can
be seen in the pattern of ice discharge for all glaciers
(Figure 15a), reflects the structure of the valley width
distribution. The resulting long-valley profile, with a major
step in the headwaters, flattening of the valley floor near the
mean ELA, and tapering of the profile into the fluvial
profile near the glacial limit, contains all of the features of
the simpler cases.
[40] The dependences of glacial characteristics of length,

area, and accumulation area ratio (AAR) on the ELA

Figure 13. Dimensionless discharge per unit width as a
function of dimensionless distance down valley for various
valley width profiles. Solid lines show that for a given x* =
1500 m, as j increases from 0 (uniform width case), the
valley asymmetry increases, and maximum specific dis-
charge both increases and reaches its maximum at
increasing distances down valley. Dashed lines show that
for a given j = 3, as the length scale setting the down-valley
dimension of the bulge in width, x*, increases, the
maximum discharge declines but moves farther down
valley. Distance and ice discharge are normalized with
respect to terminus position and maximum ice discharge
associated with uniform width valley.

Figure 14. Expected valley profile evolution for steady
climate, using valley width defined by x* = 1500 m and f =
3. (a) Erosion rate proportional to ice discharge per unit
width to the power p = 1 and (b) erosion rate proportional to
Q/W to the power p = 2. Individual lines represent
snapshots of valley profile at evenly spaced intervals.
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(Figure 16) vary nearly linearly for ELAs well below the
rapid decrease in width, but are strongly nonlinear when the
ELA is high in the valley and the width varies markedly
with elevation. In these simulations, for all ELAs that
produce glaciers more than a few kilometers in length, the
AAR varies between 0.60 and 0.73.

8. Discussion and Conclusions

[41] We have shown how the mass balance profile, and the
valley geometry conspire to set the pattern of glacial modi-
fication of a valley, assuming that erosion depends simply on
the flux of ice past a point on the bed. The most fundamental
effect is revealed in the first and simplest case: because the
pattern of ice discharge reaches a maximum at the ELA, the
pattern of erosion ought to mimic this. Sugden and John
[1976] suggested that glacial valleys should be most deeply
eroded near the long-term mean ELA. Although many of the
cases we have considered appear to support this conclusion,
this cannot hold when the mean ELA lies above the tip of the
topography. The mean ELA worsens as a predictor of the
erosion maximum as more of the distribution of ELAs rises
above the topography. What appears to be more robust in all
cases is that the erosionmaximumoccurs at roughly 1/3 of the
distance from the valley head to the glacial limit, the terminus
of that glacier corresponding to the lowest ELA. Up valley of
this maximum in erosion the valley profile will be steepened

and down valley the valley floor will be flattened as the long-
term integrated ice discharge declines in both directions.
Although details of the mass balance profile modify the
expected erosion pattern, assuming that erosion varies with
the flux of ice, these details do not alter the general result.
Incorporation of a variable climate acts to smooth the pattern,
but does not alter it in a fundamental way. Glacial erosion
should smoothly approach zero at the glacial limit, with the
details of this pattern set by the probability distribution of
ELAs.
[42] The coalescence of glacial tributaries in the head-

waters of glacial valleys creates the most marked deviations
from the simple pattern outlined above. Inspection of map
view shapes of glaciers, and compilations of the distribution
of area with elevation, show that glaciers display a prom-
inent bulge in accumulation area at high elevations, where
short headwater glacial valleys coalesce to form a single
long valley. This pattern is largely inherited from the
branching pattern of fluvial networks. Ice discharge per unit
width increases markedly where the valleys coalesce to
become the trunk glacier. If specific discharge is a proxy
for glacial erosion, then this pattern will create a step in the
valley that coincides with the tributary confluence, as
argued long ago by Penck [1905]. It may be argued that
this effect could also explain the prominent break in the
morphology of some glacial valley floors, in which poorly
organized knobby bedrock valley floors give way to orga-
nized, classic U-shaped troughs down valley of the conver-
gence of ice (Figure 2). One could potentially test this

Figure 15. Calculations of ice discharge and resulting
patterns of erosion for a case in which climate is
characterized by a mass balance capped at 2 m/yr (see
Figure 4), a Gaussian distribution of ELA with mean of
3400 m, and a valley in which width varies as in Figure 12.
(a) Ice discharge for 20 ELAs ranging from 2800 to 4000 m
(=zmax). Discharge associated with the mean ELA is shown
by a thick line. (b) Long-term mean ice discharge per unit
width, normalized with its maximum value. (c) Erosion of
long-valley profile in 10 time intervals using the long-term
mean Q/W as a proxy for erosion rate. Note strong step in
profile down valley of peak in valley width (at 5 km, see
Figure 12), flattening of valley floor, and smooth tapering of
valley into initial fluvial profile.

Figure 16. Dependence of glacial characteristics on ELA
for case described in Figure 15. (a) Terminus position,
(b) glacial footprint, and (c) AAR. Note nonlinear relation-
ships, with strong increases in all features as ELA drops
below elevation of maximum valley width. Most AAR
values lie between 0.5 and 0.75.
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notion by placing limits on the total erosion accomplished
in the last glacial cycle using cosmogenic radionuclide
concentrations in the bedrock valley floor. We would predict
that in the knobby headwater valley floor the cosmogenic
radionuclide concentrations accumulated in prior intergla-
cials may not have been fully erased by erosion during the
last glacial cycle (requiring roughly 3–5 m of erosion), but
polished outcrops in the U-shaped trough may have been.
[43] The valley geometry is largely responsible for setting

the accumulation area ratio, or AAR associated with a
glacier at any point in time. The observed AAR range of
0.5–0.8 is mostly a reflection of valley geometry. In simple
cases of uniform width and linear mass balance profile,
accumulation will mirror ablation and the AAR is inevitably
0.5; the pattern of ice discharge is parabolic and hence
symmetrical about the ELA. Altering the mass balance
profile by reducing the accumulation with a cap at high
elevations results in an AAR above 0.5, as the discharge
declines more rapidly below the ELA than it rises in the
headwaters. This effect grows for lower ELAs because the
area experiencing a maximum positive balance independent
of elevation increases (dashed line in Figure 4). However,
the effect does not yield an AAR much above 0.55. The
observed AAR range of 0.5 to 0.8 instead largely reflects
the distribution of valley widths with elevation. We have
shown in Figure 16 that AAR � 0.7 ought to be common in
valleys with significant bulges in width distributions at high
elevations. As ablation occurs at the ice surface, concentra-
tion of ice into a thick, narrow trunk stream in the ablation
zone allows it to access lower elevations with more negative
mass balances. As the accumulation area times the area
average accumulation must equal the ablation area times the
average ablation, the highly negative average ablation must
be balanced by an increased area of accumulation, resulting
in a higher AAR, a result formalized by Furbish and
Andrews [1984]. Differences in the details of the width
distribution result in differences in the maximum AAR. A
more comprehensive analysis of the controls on the AAR
would require relaxing our linear initial valley profile.
Finally, we acknowledge that some of the natural variability
of the AAR from one to another glacier is attributable to the
reduction of melt by debris cover that differs among
ablation zones. This debris cover reflects both the rate of
production of debris from valley walls in the headwaters,
and down-valley widening and coalescence of medial
moraines from tributary glaciers [e.g., Anderson, 2000].
[44] We have assumed throughout our analysis that the

glacier remains in steady state, allowing us to balance
meteorologically driven mass balance with spatial gradients
in ice discharge. We therefore cannot treat variations of
glaciers that are shorter than typical response times of
hundreds of years. As long as the patterns of ice discharge
do not differ greatly during the transient phases of advance
and retreat that we cannot mimic, our approach should still
be valid.
[45] We acknowledge that ice discharge per unit valley

width is only a crude proxy for the physics of glacial
erosion. In reality, both abrasion and quarrying are tied to
the sliding speed of ice. As ice discharge is Q = WHU ,
where U is the mean ice speed (the sum of sliding and the
vertically averaged ice deformation speed), it is clear that
Q/W still contains both ice thickness and ice speed. As long

as ice thickness does not vary as rapidly as ice width, then
variations in Q/W could well mimic ice speed. To the
degree that variations in ice speed are then accommodated
by variations in sliding speed, Q/W will mimic sliding
speed. Clearly, this is a tenuous set of approximations.
We are heartened by the degree to which patterns of glacial
erosion calculated using a model that explicitly accounts for
ice deformation and sliding [MacGregor et al., 2000] mimic
those simulated here. Further exploration of the problem
awaits better knowledge of how to parameterize both the
sliding speed distribution beneath a glacier, and how the
erosion processes are tied to this sliding.
[46] Although the strong dependence of glacial length and

area on ELA (Figure 16) may at first seem academic, we
emphasize that this analysis quantifies the strong coupling
between glaciers and the rivers downstream, into which the
sediment derived from glacial erosion is delivered. Gilbert
[1877] may have been the first to recognize that as rivers are
forced to carry increasing amounts of sediment, they lose
energy capable of either lifting additional debris from the
bottom of the river or eroding its bedrock channel. In
unglaciated catchments, sediment carried in any river reach
is transported to the particular reach from upstream tributaries
and from adjacent hillslopes. In rivers with glacial head-
waters, the quantity of sediment delivered to the top of the
fluvial system can be huge, and will depend strongly on the
footprint of the glacier. In clean-bedded alpine glacial set-
tings, sediment produced from erosion of the glacier bed is
swept from the glacier bed by efficient pressurized conduit
systems. Ignoring long-term sediment storage at the bed, the
discharge of sediment will be the integral of the erosion rate
over the glacial footprint. Crudely, the sediment discharge is
the product of a typical erosion rate with the glacial footprint.
Sediment can aggrade so deeply that the river is prevented
fromeroding its bedrock channel floor during peak glaciation.
This effect, documented in the Marsyandi River of Nepal by
Pratt et al. [2002], is a possible deterrent of fluvial erosion in
Kings Canyon in the last 1.5 Ma [Stock et al., 2004], and
was implicated in the origin of strath terraces in models of
Hancock and Anderson [2002].
[47] We conclude by reemphasizing the dramatic differ-

ences between fluvial and glacial valleys. That the signature
of glacial occupation of now deglaciated valleys remains so
strong after 10–20 ka since the last glacial maximum
implies that fluvial incision in the headwaters is inefficient
relative to glacial incision. As first discussed a century ago
by Penck [1905], the fundamental reason for the distinctive
glacial signature is the pattern in ice discharge, which, in
contrast to the fluvial system, increases to a maximum and
then declines to zero. The pattern pivots about the ELA,
which in turn has varied widely over the ice ages. The
strongest control on the pattern of erosion is the distribution
of ELAs, which range between LGM and present condi-
tions, and where it intersects the topography. Expanding on
Porter’s [1989] point, it is not only the mean Quaternary
condition that dictates the shape of the glacial landscape,
but the full distribution of Quaternary climates.

Appendix A

[48] While our approach in the main text has been to treat
climate variability in a probabilistic manner, one can also
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cast the problem as a history over which we must sum the
erosion. Here we present analytic results for the special case
of a harmonically varying climate (Figure A1). Suppose that
climate varies such that the ELA varies harmonically, zela =
z0 � Dz cos wt, where z0 is the mean ELA, Dz is the
amplitude of its variation about the mean, and w is the
frequency of the oscillation. Then

b x; tð Þ ¼ g zmax � z0 þ Dz coswt � Sxð Þ ðA1Þ

The equation for ice discharge becomes

Q x; tð Þ ¼ Wg zmax � z0 þ Dz coswtð Þx� Sx2

2

� 	
;

ðA2aÞ

x � xL ¼ 2 zmax � z0 þ Dz coswtð Þ
S

Q x; tð Þ ¼ 0; x 	 xL ðA2bÞ

[49] We seek the average erosion of a glacier whose flux
and length vary with time so that along part of the valley the
glacier is present during only part of the glacial cycle:

Q ¼ w
2p

Z p
w

�p
w

Q x; tð Þdt ¼ w
p

Z p
w

0

Q x; tð Þdt ðA3Þ

We recognize that during part of the cycle Q = 0, and the
duration of that cycle depends upon the elevation of the
point relative to the mean ELA and to the amplitude of
the cycle. Where ice is always present, integrating (A5)
yields, an expression similar to (7)

Q ¼ w
p

Z p
w

0

Q x; tð Þdt

¼ Wg zmax � z0ð Þx� Sx2

2

� 	
; x � 2 zmax � z0 � Dzð Þ=S ðA4Þ

Where ice is present only part of the time at x 	 2(zmax �
z0 � Dz)/S, however, the limits of integration are given by

0 � t � 1

w
arccos

Sx� 2 zmax � z0ð Þ
2Dz

� 	
ðA5Þ

Using J = arccos
Sx�2 zmax�z0ð Þ

2Dz

h i
, (A5) becomes

Q ¼ w
p

Z J
w

0

Q x; tð Þdt

¼ Wg zmax � z0ð Þx� Sx2

2

� 	
J
p

�
þ Dzx coswt sinJ

�
ðA6Þ

Note that (A6) applies when glaciers are present only part
of the time, and therefore when the ELA reaches or rises
above the divide (zmax), including the case when its mean
elevation is the higher (z0 > zmax).

[50] Acknowledgments. We gratefully acknowledge the careful
reviews of J. S. Walder and an anonymous reviewer, who prodded us to
explore more deeply the older literature. R. S. Anderson and M. A. Kessler
thank both UC Santa Cruz and University of Colorado for supplying funds
to support the postdoctoral work of M. Kessler. Among us, P. Molnar is
grateful to the University of Colorado for a few months of salary that allow
curiosity to lead him into directions new to him.

References
Anderson, R. S. (2000), A model of ablation-dominated medial moraines
and the generation of debris-mantled glacier snouts, J. Glaciol., 46(154),
459–469.

Anderson, R. S., C. A. Riihimaki, E. B. Safran, and K. R. MacGregor
(2006), Facing reality: Late Cenozoic evolution of smooth peaks, gla-
cially ornamented valleys and deep river gorges of Colorado’s Front
Range, in Tectonics, Climate and Landscape Evolution, edited by S. D.
Willett et al., Spec. Pap. Geol. Soc. Am., 398, 397–418.

Elvehoy, H., N. Haakensen, M. Kennett, B. Kjollmoen, J. Kohler, and
A. M. Tvede (1997), Glasiologiske undersokelser I Norge 1994 og 1995,
Publ. 19, Norges Vassdrags og Energiverk, Oslo.

Furbish, D. J., and J. T. Andrews (1984), The use of hypsometry to indicate
long-term stability and response of valley glaciers to changes in mass
transfer, J. Glaciol., 30(105), 199–211.

Gilbert, G. K. (1877), Report on the Geology of the Henry Mountains, U.S.
Gov. Print. Off., Washington, D. C.

Hallet, B., L. Hunter, and J. Bogen (1996), Rates of erosion and sediment
evacuation by glaciers: A review of field data and their implications,
Global Planet. Change, 12(1–4), 213–235.

Hancock, G. S., and R. S. Anderson (2002), Numerical modeling of fluvial
terrace formation in response to oscillating climate, Geol. Soc. Am. Bull.,
114(9), 1131–1142.

Harbor, J. M. (1992), Numerical modeling of the development of
U-shaped valleys by glacial erosion, Geol. Soc. Am. Bull., 104, 1364–
1375.

Harbor, J. M., B. Hallet, and C. F. Raymond (1988), A numerical model of
landform development by glacial erosion, Nature, 333, 347–349.

Harrison, W. D., D. H. Elsberg, K. A. Echelmeyer, and R. M. Krimmel
(2001), On the characterization of glacier response by a single time-scale,
J. Glaciol., 47, 659–664.

Johannesson, T., C. F. Raymond, and E. D. Waddington (1989), A simple
method for determining the response time of glaciers, in Glacier Fluctua-
tions and Climatic Change, edited by J. Oerlemans, pp. 343–352,
Springer, New York.

MacGregor, K. R., R. S. Anderson, S. P. Anderson, and E. D. Waddington
(2000), Numerical simulations of glacial-valley longitudinal profile evo-
lution, Geology, 28, 1031–1034.

Meier, M. F., and A. Post (1962), Recent variations in mass net budgets
of glaciers in western North America, Int. Assoc. Hydrol. Sci. Publ., 58,
63–77.

Meier, M. F., W. T. Tangborn, L. R. Mayo, and A. Post (1992), Combined
ice and water balances of Gulkana and Wolverine Glaciers, Alaska, and
South Cascade Glacier, Washington, 1965 and 1966 Hydrologic years,
U.S. Geol. Serv. Prof. Pap., 715-A1971.

Oerlemans, J. (1984), Numerical experiments on large-scale glacial erosion,
Z. Gletscherkd. Glazialgeol., 20, 107–126.

Figure A1. Numerical and analytic solutions for long-
term average ice discharge when forced with harmonic
history of ELA. (a) Solutions for ice discharge pattern for
each of 20 times within the history of ELA. Thick line
depicts ice discharge for mean ELA. (b) Numerical
summation of discharge, normalized by peak discharge,
corresponds exactly to analytical solution for long-term ice
discharge using equation (A6).

F01004 ANDERSON ET AL.: GLACIAL VALLEY PROFILES SIMPLY EXPLAINED

13 of 14

F01004



Oerlemans, J., and J. P. F. Fortuin (1992), Sensitivity of glaciers and small
ice caps to greenhouse warming, Science, 258, 115–117.

Paterson, W. S. B. (1994), The Physics of Glaciers, 3rd ed., 480 pp.,
Elsevier, New York.

Penck, A. (1905), Glacial features in the surface of the Alps, J. Geol., 13,
1–19.

Porter, S. C. (1975), Equilibrium-line altitudes of late Quaternary glaciers in
the Southern Alps, New Zealand, Quat. Res., 5, 27–47.

Porter, S. C. (1977), Present and past glaciation thresholds in the Cascade
Range, Washington, USA: Topographic and climatic controls, and paleo-
climatic implications, J. Glaciol., 18, 101–116.

Porter, S. C. (1989), Some geological implications of average Quaternary
glacial conditions, Quat. Res., 32, 245–261.

Pratt, B., D. W. Burbank, A. Heimsath, and T. Ojha (2002), Impulsive
alluviation during early Holocene strengthened monsoons, central Nepal
Himalaya, Geology, 30, 911–914.

Raymo, M. E. (1994), The initiation of Northern Hemisphere glaciation,
Annu. Rev. Earth Planet. Sci., 22, 353–383.

Stock, G. M., R. S. Anderson, and R. C. Finkel (2004), Cave sediments
reveal pace of landscape evolution in the Sierra Nevada, California,
Geology, 32(3), 193–196, doi:10.1130/G20197.1.

Sugden, D. E., and B. S. John (1976), Glaciers and Landscape, Edward
Arnold, London.

Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science,
292, 686–693.

�����������������������
R. S. Anderson and M. A. Kessler, Institute for Arctic and Alpine

Research, University of Colorado, 1560 30th Street, Campus Box 450,
Boulder, CO 80309, USA. (robert.s.anderson@colorado.edu)
P. Molnar, Cooperative Institute for Research in Environmental Sciences,

University of Colorado, Boulder, CO 80309, USA.

F01004 ANDERSON ET AL.: GLACIAL VALLEY PROFILES SIMPLY EXPLAINED

14 of 14

F01004


