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1 About this document

This document describes the physics behind the glacier dynamics in the PhET sim. It is currently under

construction. Sections 2 and 3 are more or less complete. Later sections are still in the works.

2 Glacier geometry

The variables describing the shape and size of the glacier are shown in �gure 1. The spatial dimensions are

labeled x (horizontal) and z (vertical), and have units of meters. F (x) de�nes the elevation of the �oor of

the valley, and x = 0 is set at the point of maximum elevation where the glacier begins.

The thickness of the glacier is H(x, t), where t is time in years. The elevation of the glacier's surface is

Z(x, t) = F (x) +H(x, t). The width of the valley is W (x), and is pre-de�ned to have some pro�le similar to

Figure 1: Glacier geometry
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the one shown in �gure 2. The valley width is largest at the highest elevations (re�ecting the large collection

Figure 2: Valley width (example)

area at the glacial headwaters) and is constant along the long valley down which the glacier will extend. We

make the approximation of vertical valley walls, so that the cross-sectional area of the glacier is HW at all

times.

The time dependence of the glacier's thickness, H(x, t), is governed by four processes:

1. ice �ow due to viscous deformation,

2. ice �ow due to sliding,

3. ice accumulation due to snowfall, and

4. ice ablation (mass loss due to melting and sublimation).

These processes are discussed in sections 4 and 5.

3 Glacier object interface

The glacier is completely described by its thickness, H(x, t), and internal ice velocity �eld, V(x, z, t). The

thickness is a scalar and velocity is a two-component vector (V = Vxx̂+Vz ẑ, where x̂ and ẑ are unit vectors).

Given some �xed valley geometry (F (x) and W (x)), H and V are completely determined by the present

and past climate conditions. For our purposes, the climate is completely described by two independent
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parameters which may vary in time: temperature T0(t) and precipitation P0(t). The subscript 0 indicates

that these quantities describe temperature and precipitation at some reference elevation (their z-dependence

will follow from these values).

The user may specify the current and future values of both T0 and P0. If future values are not speci�ed,

the climate will remain constant in time. If future values are speci�ed (along with some target time for the

future values to apply), T0 and P0 will change linearly from current to future values. The only other climate

change a user can make is to reset the glacier to its equilibrium thickness, which is a direct function of the

present values of T0 and P0.

The values for H(x, t) and V(x, z, t) depend on the integrated climate history; that is, they depend on

the parameters T0(t) and P0(t) for all times previous to the present. This dependence is developed in the

following sections.

4 Ice �ow

Glacial ice moves down-valley by two processes, sliding and viscous deformation, whose velocities (us and

ud, respectively) add to form the total velocity of ice �ow.

Viscous deformation occurs due to stress from the weight of overlying ice. This stress is given by

τg = ρg
dH

dx
(H − ξ) (1)

where ρ is the density of ice (about 103 kg/m3), g is gravitational acceleration (9.8 m/s2), and ξ is the height

above the valley �oor (ξ = z−F ). Glenn's Flow Law speci�es the vertical pro�le of the deformation velocity

as follows:

dud
dξ

= Aτ3 (2)

where A is a temperature-dependent constant (about 6.8× 10−24 Pa−3 · s−1 at temperatures appropriate for

temperate alpine glaciers). Using equation 1 in equation 2, and integrating from the base to the top of the

glacier (ξ = 0 to ξ = H) yields the deformation velocity as a function of vertical distance in the ice:

ud(ξ) = A

(
ρg
dH

dx

)3 (
H3ξ − 3

2
H2ξ2 +Hξ3 − 1

4
ξ4

)
. (3)

The average deformation velocity is then

ūd =
1
5
A

(
ρg
dH

dx

)3

H4. (4)
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Finally, it is convenient to write the deformation velocity in terms of its vertical-average:

ud(ξ) = ūd

(
ζ − 3

2
ζ2 + ζ3 − 1

4
ζ4

)
(5)

where the dimensionless ζ = ξ/H.

The physics of glacier sliding is not well understood. Sliding velocity us can, however, be fairly accurately

modeled (Kessler et al., 2006) with

us = Uce
(1−τc/τg) (6)

where Uc is a characteristic sliding value (taken to be 20 m/yr) and τc is a characteristic gravitational stress

(taken to be 1 bar, or 105 Pa); τg is the actual gravitational stress from equation 1.

Given the velocities calculated above, the net �ux of ice volume through a vertical plane (called the

discharge, Q) is

Q(x, t) = W (x)H(x, t) [ūd(x, t) + us(x, t)] (7)

where ūd and us are calculated from equations 4 and 6, respectively.

5 Mass balance

The thickness of the glacier is also a�ected by ice accumulation and ablation (melting and sublimation).

These processes are governed by the �mass balance,� a function which describes the time rate of change

of the glacier's height depending on the elevation. The mass balance, b(z), is often de�ned to be a linear

function of elevation with a maximum cuto� value of bmax:

b(z) = min {γ (z − zela) , bmax} (8)

where γ, zela and bmax are set to re�ect the precipitation and melting conditions of the local environment.

Typical values may be γ ≈ 10, zela ≈ 2800m, and bmax ≈ 2m/yr. These quantities may be seen in �gure 3.
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Figure 3: Mass balance (example)
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