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[1] Glaciers draining westward from the Sierra Nevada divide, California, during the Last
Glacial Maximum (LGM) were �7 times longer than east-draining glaciers. We address
the degree to which this difference may be attributed to the topographic asymmetry of the
west-tilted Sierran block and the climate asymmetry resulting from orographic
modification of Pacific Ocean storms. We simulate kilometer-scale glaciers within the
50 � 50 km Kings Canyon region of the southern Sierra by employing a two-dimensional
numerical model that is driven by simple, spatially variable climates and treats ice
transport by deformation, sliding, and avalanching. In numerical experiments, we match
simulated termini to LGM moraine positions to constrain the parameters of different
climate scenarios. The 38-km-long LGM glacier in Kings Canyon was reproduced by a
climate specified by an equilibrium line altitude (ELA) of 3170 m, a mass balance gradient
of 0.01 m/yr/m, and a maximum positive balance of 2 m/yr. This climate generates much
shorter (average �6 km long) east-draining glaciers that, however, overshoot the LGM
moraines by �1 km. Roughly 97% of the E-W difference in glacier lengths can
therefore be attributed to topographic asymmetry alone. A second experiment suggesting a
120-m-higher ELA of 3290 m east of the divide can explain the shorter east-draining
glaciers. An experiment in which orographic precipitation is explicitly simulated and
melt is prescribed using a positive degree-day algorithm matches both Kings Canyon and
the average east-draining glacier length with an LGM climate that was 5.6�C cooler
and �2 times wetter than the modern Sierra Nevada.
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1. Introduction

[2] Former glaciations of the Sierra Nevada of California
displayed a strong asymmetry in glacier lengths between the
western and eastern flanks of the range [e.g., Birman, 1964;
Wahrhaftig and Birman, 1965; Moore, 2000]. Glacial
extents delineated by moraines and trimlines indicate that
Pleistocene glaciers on the eastern flank were less than 20 km
in length while those on the western flank were as long as
100 km [Wahrhaftig and Birman, 1965, and references
therein]. During the Last Glacial Maximum (LGM), known
locally as the Tioga Glaciation [Blackwelder, 1931; Clark et
al., 2003], the main trunk glacier occupying Kings Canyon
on the western flank was �38 km long (Figure 1), roughly 7
times the length of the average glacier on the opposing
eastern flank [Moore, 2000]. This skewed pattern of glacier

lengths has been attributed to strong asymmetries in topog-
raphy and climate. The western flank of the Sierra Nevada
has a much lower slope and consequently longer valleys
than the eastern flank (Figure 1) [e.g., Bateman and
Wahrhaftig, 1966]. During the LGM, these lower-sloped
valleys would have had much larger snow accumulation
areas; assuming a uniform equilibrium line altitude (ELA,
the altitude of the line in the landscape separating net
accumulation of ice above and net ablation of ice below)
of �3100 m (determined for the eastern flank [Gillespie,
1991; Clark et al., 2003]), the western flank had four times
the accumulation area of the eastern flank (Figure 2). In
addition to this distinct topographic asymmetry, the Sierra
Nevada also displays a remarkable asymmetry in climate
(Figure 3). The modern Sierra Nevada receives most of its
wintertime precipitation from storms impinging from the
southwest, which is an ideal direction for generating strong
orographic influence on precipitation over this southeast-to-
northwest trending range [e.g., Pandey et al., 1999]. Uplift
and cooling of air masses as southwesterly storms cross the
range produce heavy precipitation on the western flank. As
these water-depleted air masses pass over the crest, they
descend to warmer elevations and expand, inhibiting further
precipitation and casting a substantial rain shadow into the
western Great Basin. For example, the Fresno Airport
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station on the western, upwind side of the range receives
twice as much precipitation (28 cm/yr) as the Independence
station on the eastern, lee side of the range (13 cm/yr)
despite the Independence station being 1100 m higher in
elevation (Western Regional Climate Center, Climate sum-
maries of Southern California meteorological stations, 2004,
http://www.wrcc.dri.edu/summary/climsmsca.html) (herein-
after referred to as WRCC, http://www.wrcc.dri.edu/
summary/climsmsca.html).
[3] The effects of topographic and climatic asymmetry on

glacier length in the Sierra Nevada have been considered
before [e.g., Wahrhaftig and Birman, 1965]; however, there

has been no quantitative assessment of their respective
effects. We use numerical simulations of glaciers, in which
we can turn on and off various processes, to assess the
independent contributions of topography and climate on the
length of LGM glaciers in Kings Canyon and the opposing

Figure 1. Location and topography of the study area. (a) False color image of the southern Sierra
Nevada, California, in the vicinity of Kings Canyon, with (b) location within California. Range crest
(blue line) averages �3900 m. Extent of Last Glacial Maximum (LGM) glaciation (Tioga glaciation) is
shown by black line [Moore, 2000]. LGM glacier terminus location in Kings Canyon (star) is at
�1300 m. (c) Swath-averaged topographic profile perpendicular to range crest; a distinct topographic
asymmetry.

Figure 2. East-west Sierra Nevada hypsometry. Area
above a given elevation for the 50-km-long section of the
Sierra Nevada range centered about Kings Canyon shown in
Figure 1. Solid line is the western flank, dashed line is the
eastern flank. Given an LGM ELA of 3100 m, the western
flank would have had 4 times the accumulation area as the
eastern flank.

Figure 3. Schematic diagram of a profile of the Sierra
Nevada showing two hypothesized reasons for longer and
lower elevation glaciers forming on the western flank: (1)
Lower average slope on the western flank results in a much
larger accumulation areas (see also Figure 2) and (2) uplift,
convergence, and cooling of air masses predominantly from
the southwest results in strong precipitation on the western
flank, while lowering, expansion, and warming cause a
precipitation shadow on the eastern flank.
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eastern flank, and compare our results to observed LGM
termini positions and inferred ELAs.
[4] We view the simulations presented here as one step

toward the goal of basing the reconstruction of paleoclimate
from glacial geologic information entirely on the physics of
glaciers, climate, and topography. Although simple methods
exist to assess past ELAs from moraine positions, these
should be reevaluated in light of modern understanding of
both the climatic forcing and the glaciological response to it.
We ultimately hope to incorporate these numerical simu-
lations of alpine glaciers into models of long timescale
landscape evolution, and long timescale variation in sedi-
ment discharge to the fluvial and depositional systems
downstream. We must first, however, demonstrate that this
glacial model can match the most robust physical con-
straints available, data sets of LGM glacier positions.
[5] Geomorphic observations, including moraine posi-

tions and trimlines from paleo-glaciers, have been used by
many authors to infer paleoclimate properties. Most com-
monly, these constraints are used to determine the former
ELA by assuming a specific ratio of accumulation area to
total glacier area (AAR) [e.g., Meierding, 1982; Porter,
1975; Gillespie, 1991; Burbank, 1991]. Using just the
glacier footprint, and assuming an AAR typical of temperate
valley glaciers of 0.65 [Meier and Post, 1962; Meierding,
1982], one can estimate the paleo-ELA, and thereby infer a
paleoclimate. This method is widely used because it is a
straightforward calculation and the observational data with
which to implement it are often preserved in the geomor-
phology. However, this simple method has potential for
large errors that limit its accuracy for paleoclimate recon-
structions because it assumes a constant AAR. Actual
measured AARs typically lie between 0.5 and 0.8 [Meier
and Post, 1962]. In addition, an accurate calculation of the
AAR requires that the ELA be considered at the ice surface,
which can be well above the observable valley floor. The
horizontal position of the ELA shifts downvalley as the
glacier thickens, effectively capturing more accumulation
area, which therefore acts as a positive feedback on glacial
extent.
[6] Finally, one might wish to constrain properties of a

past climate besides the ELA (e.g., temperature, wind
velocity, precipitation rate). Reconstructions of climate can
be accomplished by dividing the change in ELA from the
LGM to the present by a lapse rate to estimate the required
temperature depression in the LGM [e.g., Smith et al.,
2005]. Separating the change in net mass balance estimated
from ELA reconstructions into precipitation and melt com-
ponents would further constrain climate forcing of glaciers.
[7] The method used here to estimate paleo-ELAs and

climates is to simulate numerically many glaciers within a
mountainous topography for a variety of imposed climates,
evaluating each simulation by the degree to which it
reproduces the observed moraine patterns. A similar tech-
nique has been applied by Plummer and Phillips [2003] to
the Bishop Creek basin in California. The numerical model
used here allows us to specify climates of any degree of
complexity, from simple three-parameter climates to com-
plex climates in which patterns of precipitation and melt are
explicitly calculated. By including climate and ice dynamics
in a single model, we are able to capture feedbacks between
glaciers and climate; for example, the increase in accumu-

lation area as glaciers thicken is explicitly captured. The
effects of the topography are therefore captured more
completely than when employing a simple map-view
AAR calculation. In addition, performing these calculations
across a wide area that includes many glacial valleys yields
a more robust prediction of the paleoclimate. The details of
climate and topography in any one valley do not strongly
steer our assessment.

2. Numerical Model

[8] We developed a two-dimensional finite difference
numerical model that simulates the formation and evolution
of temperate valley glaciers on a two-dimensional topo-
graphic surface with a specified meteorological setting.
Driven by a time series of mass balance (snow precipitation
- melt rate), the model calculates ice surface elevations
above a two-dimensional terrain by solving equations for
ice flux and mass conservation using explicit methods. A
number of other authors have employed one- and two-
dimensional models based on similar sets of equations
[e.g., Oerlemans, 1986; MacGregor et al., 2000; Plummer
and Phillips, 2003]. However, the model developed for this
study integrates glacier and climate simulation components
explicitly, and thus has the unique ability to simulate feed-
backs between the changing ice surface and the climate
forcing. In addition, the framework of this model permits
the inclusion of discrete processes that modify the ice
distribution, such as avalanching on steep terrain. The
efficiency of this model allows us to simulate glacial
evolution over millennial timescales at spatial scales that
resolve valley glaciers. Finally, from a computational stand-
point, the simplicity of this model permits the investigation
of significant regions of parameter space, allowing us to
determine the effect of new processes or altered algorithms
for them.

2.1. Conservation of Mass

[9] The core of this numerical model is conservation
of mass at each cell in a regular two-dimensional grid
(Figure 4). Change in ice thickness at each grid cell is
calculated using the continuity equation,

dhi

dt
¼ bz �

dqx

dx
� dqy

dy
; ð1Þ

in which hi is the ice thickness at a node in a two-
dimensional lattice, and bz is the rate of accumulation
or ablation of ice (we assume a uniform ice density of
917 kg/m3, including freshly precipitated ice). Here q is the
volumetric specific discharge [L3/LT] of ice into and out of
a cell from neighboring cells,

q ¼ hi Ud þ Usð Þ; ð2Þ

in which Ud is the depth-averaged velocity of ice owing to
ice deformation, and Us is the sliding velocity. We discuss
the calculation of bz, Ud and Us below.
[10] The primary obstacle in constructing this numerical

model is that the entire simulation space is not covered with
ice; therefore internal boundaries between rock and ice
exist, and special measures must be taken to ensure ice is
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not created or lost at those boundaries. Our model conserves
ice to within 0.01% over the duration of the simulations
presented here, the longest of which are �10,000 years and
roughly a million time steps. For an in-depth discussion of
the challenges of constructing a similar two-dimensional
finite difference model for glaciers we refer the reader to
Plummer and Phillips [2003].

2.2. Mass Balance

[11] The local climate of a temperate alpine glacier can be
defined by the net mass balance, which is the sum of the
accumulation by snow precipitation and the loss by abla-
tion. We have employed several schemes to prescribe the
mass balance.
2.2.1. Net Mass Balance
[12] In our initial simulations, we prescribe a simple mass

balance that combines accumulation and ablation into a
single thresholded linear mass balance function of elevation
(Figure 5),

bz ¼ min rbz Zi � ELAð Þ; bmax
z

� �
; ð3Þ

in which rbz is the gradient in mass balance with elevation,
Zi is the ice surface elevation, ELA is the elevation of zero
net mass balance, and bz

max is a prescribed maximum mass
balance that accounts for the depletion of moisture available

for precipitation at higher elevations. We chose this three-
parameter mass balance function to reproduce the gross
characteristics of measured mass balance functions on
modern glaciers in western North America [Meier et al.,
1971; Mayo, 1984], and specifically those of the orogra-
phically influenced mass balance across the Sierra Nevada.
The observation that the mass balance gradient generally
declines and flattens out in the accumulation zone [e.g.,
Meier and Post, 1962] is included by limiting the mass
balance to a maximum of bz

max. The variation in glacier
extent with ELA was explored; however, in the simulations
shown here, we used values for the mass balance gradient
(rbz = 10 m/yr/km) and maximum mass balance (bz

max =
2 m/yr) [Meier et al., 1971; Mayo, 1984] that are typical for
glaciers in western North America.
2.2.2. Orographic Precipitation and Positive
Degree-Day Melt
[13] In additional simulations, we incorporate an oro-

graphic precipitation model [Roe et al., 2002] into this
glacial model to calculate explicitly the effect of topography
on the spatial variation in precipitation from an air mass
forced over the range. Because the primary source of winter
precipitation is from storms coming from the southwest
[e.g., Pandey et al., 1999], orographic modification of the
precipitation pattern is important. A melt model based upon
a positive degree-day algorithm was used to determine the
ablation of ice. The sum of the solid phase precipitation and
the melt yields the net mass balance.
[14] As summarized by Roe et al. [2002], an air mass

moving across a mountain range is forced to ascend to higher
and cooler elevations, causing the air column to saturate and
excess moisture to precipitate (Figure 3). The convergence of
the column moisture flux can be expressed as

�r	 F
*
¼ a0 þ a1v

dz

dx

� �
esat Tsð Þ; ð4Þ

in which a0 (=P0/esat(T0)) scales rF to match the
prescribed far field precipitation (P0) where dz/dx = 0, and
T0 is the far field surface temperature; a1 (=Caesat(T0))
scales the topographically derived precipitation, in which
Ca is fitted to simulate modern precipitation patterns
for modern temperatures; v is the wind velocity; and esat(Ts)
is the saturation vapor pressure, given by esat(Ts) =
6.112e17.67Ts/(243.5+Ts), where Ts is the local surface tempera-
ture [Roe, 2005].

Figure 4. Schematic of the model setup. (a) Nine cells of
the calculation space, with 200 � 200 m spacing. Ice
thickness, H, is difference between ice surface elevation z
and bedrock elevation, zb. (b) View from top showing ice
discharges, Q, to and from the central cell. Bottom right cell
shows those variables calculated within a cell, and those
calculated across cell boundaries (S = ice surface slope, tb =
gravitational driving stress). (c) Ice speed profile showing
sliding speed, Us, and deformation rate profile. Ice
discharge Q is calculated from Q = HU� .

Figure 5. Example net mass balance function (bold line)
described by three parameters: the maximum mass balance
(bz

max), the mass balance gradient (rbz), and the equilibrium
line altitude (ELA).
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[15] Saturation does not translate to precipitated hydro-
meteors on the ground directly below. Instead, the hydro-
meteors impact downwind; the precipitation rate at any
location will therefore integrate the upwind moisture flux
over some smoothing length scale (Dx) [Roe et al., 2002;
Alpert, 1986],

_p xð Þ ¼ S
Dxp
2

Z 1

x

�r	 F
*
�e� x�x0ð Þ=rx½ 2dx0: ð5Þ

Here S is a scaling factor that ensures precipitation is
conserved. We have adjusted Ca and Dx such that the
orographic model reproduces modern patterns of precipita-
tion across the Sierra Nevada when forced with modern
temperature records and an average storm wind velocity of
10m/s (Figure 6). The value ofDx can be considered thewind
velocity multiplied by the time it takes for an average
hydrometeor to impact the ground. The fitted value of Dx
(35 km) coincides with an average fall distance of 3.5 km
(the moisture scale height [Roe, 2005]) and a settling velocity
of 1 m/s (which is reasonable for snow [Roe, 2005]).
[16] In our model, only precipitation falling in a solid

form contributes to the mass balance of the glacier. The
phase of the precipitation is calculated using the ground
surface temperature, Ts, which both declines linearly with
surface elevation and varies sinusoidally in time,

Ts z; tð Þ ¼ Ts zo; toð Þ þ AT sin 2p t � toð Þ=tð Þ þ G z� zoð Þ; ð6Þ

in which G is the atmospheric lapse rate (�6.5 �C/km [Roe,
2005]), t is the period of oscillation (i.e., t = 1 year), and

AT is the half-amplitude of the temperature swing. Seasonal
variations prescribed by equation (6) are accounted for in
calculating both the solid phase precipitation and the melt;
from these the net annual mass balance (bz) is calculated for
use in equation (1).
[17] The surface temperature history is used to calculate

the history of melt rate (m/yr) at each cell using a positive
degree-day method [e.g., Braithwaite, 1995],

_m ¼ kNpddTpdd ; ð7Þ

in which k is the positive degree-day factor (k = 0.008 m/d/
�C [Braithwaite, 1995]), Npdd is the number of days per year
with a mean temperature above 0�C, and Tpdd is the mean
temperature for those days.
[18] In the simulations shown here the orographic precip-

itation is calculated over a one-dimensional simplified to-
pography perpendicular to the prevailing wind direction
(Figure 6b). This simplified topography has a linear ramp
on the western flank, with slope equal to the swath-averaged
Sierra topography, and a smoothed version of the swath-
averaged topography on the eastern flank. Collapsing the
topography in this manner simplifies the precipitation pattern
and acknowledges that air masses respond to topography on
scales much larger than the 200 m cells in this model. This
approach neglects the effect of valley-scale topographic
steering on precipitation [Anders et al., 2004]. In contrast,
the melt model, which depends on local conditions (i.e.,
temperature), is applied with elevations given by the full two-
dimensional topography.

2.3. Ice Flux

[19] In this model, ice is transported between cells via two
continuum processes, ice deformation and basal sliding, and
one discrete process, avalanching. In each case we seek the
specific volumetric discharge of ice, or volume per unit width
per unit time.
2.3.1. Ice Deformation
[20] Deformation of ice within a glacier acts to transport

ice in the direction of the local ice surface slope. We employ
the shallow ice approximation [e.g., Paterson, 1994], in
which ice discharge is driven only by the stress associated
with the local ice surface slope. The depth-averaged veloc-
ity due to ice deformation is given by

Ud ¼
2

5
Ahitnb; ð8Þ

in which A is the coefficient of Glenn’s flow law, hi is the ice
thickness, and tb is the gravitational driving stress: (tb =
rghirZi, in which Zi is the ice surface elevation). In reality, A
is a function of many factors, including, but not limited to,
water content, temperature, pressure, and included particulate
matter; we use the recommended value of 6.8 � 10�15 s�1

(kPa)�3 for temperate glaciers [Paterson, 1994], and ignore
temperature effects because the alpine glaciers we seek to
simulate are temperate. The flow law exponent n is generally
taken to be 3 for glacier ice under normal environmental
conditions [e.g., Paterson, 1994]; this value is used here.
2.3.2. Ice Sliding
[21] The processes that contribute to basal sliding are less

well understood than those controlling ice deformation.

Figure 6. (a) Orographically derived precipitation over (b)
a typical Sierra Nevada profile encountered by winds from
the southwest. The zone of bold black lines denotes the area
of the glacial simulation. Asterisks denote meteorological
recording stations used to calibrate the orographic model;
from left to right, they are Fresno Airport, Balch Power
House, Grant Grove, and Lodgepole; the circle off the
eastern flank indicates the meteorological recording station
at Independence (WRCC, http://www.wrcc.dri.edu/summary/
climsmsca.html). These sites are plotted at the horizontal
position for which the elevation in Figure 6b is equal to the
station elevation.
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These include regelation and block sliding, as well as
localized deformation near the bed. The presence of a thin
layer of water separating the ice from the bed simplifies the
problem by allowing a zero shear stress approximation;
however, friction between the bed and rocks embedded in
the ice is no less difficult of a problem, given that it depends
on the spatial distribution of rock concentration as well as
the physics of viscous flow around individual rocks that can
potentially stick and slip with respect to the bed. Also,
sliding velocity (Us) is difficult to quantify because on short
timescales it is a strong function of the often-unknown
glacial/subglacial hydrology [e.g., Iken and Bindschadler,
1986; Anderson et al., 2004], although progress is being
made in modeling glacier hydrology [Flowers and Clarke,
2002a, 2002b; Marshall et al., 2005].
[22] We have made no attempt in the numerical modeling

reported here to capture the glacial hydrology or sliding
physics at small length scales or short timescales; treating
the spatial and temporal variability of glacial/subglacial
hydrology and its interactions with ice motion, which occur
on timescales from diurnal to decadal, would greatly com-
plicate the simple model of glaciers presented here. Although
it is possible to incorporate a glacial hydrological model with
a model for ice motion [e.g., Kessler and Anderson, 2004;
Marshall et al., 2005], this is computationally expensive and
the timescales of the hydrological system are short compared
to the timescales of interest in this study.
[23] We have chosen a simple formulation of the sliding

velocity that meets three criteria: (1) the sliding velocity is
very small at low gravitational driving stress (�1 bar) and
zero when the gravitational driving stress is zero; (2) the

sliding velocity increases rapidly within some range of
gravitational driving stresses; and (3) the sliding velocity
remains finite at high gravitational driving stresses (�1 bar).
Although this formulation does not include explicitly the
glacial hydrology, these three properties should remain
unchanged with its inclusion. An ideal formulation for
sliding velocity might calculate sliding from first principles
and measurable quantities without unconstrained coeffi-
cients. However, as the inner workings of the sliding
mechanism are not well known, we have chosen to use a
simple formulation in which the parameters are measurable
and for which substantial intuition exists. Many formula-
tions for basal sliding have been developed for numerical
modeling of glacier motion; an overview of several simple
sliding formulations is given in Appendix A.
[24] In temperate alpine glaciers, it is commonly observed

that the gravitational driving stress is within a narrow range
of values around 1 bar (or 105 Pa) [e.g., Paterson, 1994;
Hooke, 2005]. We interpret the narrow observed range of tb
values as indicative of an attractor state toward which
glacier systems tend from a wide range of initial conditions,
and basal sliding as a mechanism that brings the gravita-
tional driving stress toward that state. Large values of tb
produce significant sliding, transporting ice efficiently be-
tween adjacent locations, thus reducing the local surface
slope and, thereby, the gravitational driving stress. We
express the sliding velocity as

Us ¼ Uce
1�tc

tb ; ð9Þ

in which Uc is a typical sliding velocity and tc is the
gravitational driving stress that gives rise to this typical
sliding velocity. The values ofUc = 20m/year and tc = 1bar =
105 Pa were used in the simulations shown here. In practice,
themodel is relatively insensitive to the sliding law parameter
values; more conservative estimates of sliding (i.e., lower Uc

or higher tc) result in higher average ice thickness and
gravitational driving stress that then result in greater motion
by ice deformation. This formulation of the sliding velocity
maintains sliding within reasonable bounds between 0 (when
tb � tc) and eUc (when tb� tc) (Figure 7).We note that the
sliding is less sensitive to tb at high gravitational driving
stresses than in a tb

2 sliding law; this is advantageous in that
the relatively poorly constrained process of sliding is
conservatively estimated. We also acknowledge that this
formulation neglects some relevant physics (e.g., subglacial
hydrology and till deformation), which can cause behaviors
quite different from those proposed here, such as rapid sliding
at low gravitational driving stresses. However, as the general
trend in sliding with the gravitational driving stress remains
positive for all cases, these behaviors could be crudely
modeled through the parameter tc.
2.3.3. Snow Avalanching
[25] High, steep terrain in glaciated mountain ranges

typically remains free of snow even when lower altitudes
host substantial glaciers. This condition results from topo-
graphic controls of both depositional processes (e.g., strong
winds preventing deposition), and post-depositional pro-
cesses (e.g., snow avalanching on steep slopes).
[26] In this model, we employ post-depositional ava-

lanching as a discrete process that transports ice away from

Figure 7. Normalized sliding laws showing relationship
between sliding rate and gravitational driving stress. Sliding
velocities are scaled by their value at the critical driving
stress, tc. Dashed line is the standard second power
formulation [e.g., Paterson, 1994; Plummer and Phillips,
2003], thin solid line is the formulation of Marshall et al.
[2005] with dependence on hydrologic variables removed,
and solid bold line is the function used here. As with the
standard formulation, the formulation used here approaches
zero at tb = 0; unlike other formulations, the velocity used
here is limited at high gravitational driving stress.
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steep surfaces. After the ice surface heights have been
updated for ice continuity during that time step (equation
(1)), we employ an avalanching routine similar to routines
used for sand avalanching [e.g., Bak et al., 1988; Werner,
1995]. From all cells that exceed a prescribed slope a small
volume of snow is moved downslope. This process is
repeated until the gradient is everywhere below a prescribed
maximum slope (=30�), or until bedrock is exposed. A
similar approach of moving parcels of snow between cells
has been employed to model glacier dynamics by using the
gravitational driving stress of 1 bar as the criterion for
stability [Harper and Humphrey, 2003]. Since the time step
required for numerical stability of equation 1 is quite small
(�1 day), and the avalanching algorithm is computationally
expensive, the avalanching routine is not run every time
step. Instead, avalanching occurs at random intervals with a
frequency of several events per year; more frequent ava-
lanching has no noticeable effect on model results.

3. Four Numerical Experiments

[27] We report results from four numerical experiments.
The first three experiments test the sensitivity of the
asymmetry in glacial extents between Kings Canyon and
the opposing eastern flank to various climate scenarios. In
the first experiment we use the simplest climate formulation
to calculate the best-fitting LGM ELA on the western flank
and isolate the contribution of topography to the east-west
asymmetry in glacier lengths. In the second experiment we
determine the change in ELA on the eastern flank needed to
explain the residual east-west asymmetry in glacier lengths
after topography has been accounted for. In the third
experiment we use the explicit orographic model for pre-
cipitation and the positive degree-day method for melt to
explore what temperature and precipitation anomaly com-
bination produces an east-west asymmetry in climate suffi-
cient to explain the residual asymmetry in glacial extent. In
a fourth and final experiment we determine the north-south
gradient in temperature that best simulates the observed
north-to-south rise in termini elevations and ELA. In all of
these experiments, we compare quantitatively the simulated
glacial extents with mapped LGM glacier termini positions
in Kings Canyon and on the opposing eastern flank [Moore,
2000].
[28] The topography used in these simulations is derived

from 10 m USGS DEMs of the Kings Canyon area,
decimated to a 200-m grid spacing (Figure 1). The bound-
aries of the simulation space were chosen to go well beyond
the drainage divides of the valleys of interest, and were
prescribed to be ice-free at all times.

3.1. Experiment 1: Western Flank Equilibrium Line
Altitude Lowering

[29] In the first numerical experiment, we used a three-
parameter climate (equation (3) and Figure 5) to determine
the ELA that best replicates the extent of glaciation in Kings
Canyon during the LGM. We initiated the simulation with
the ELA set near the maximum bedrock surface elevation in
the simulated space. The ELA was then lowered in incre-
ments of 50 m at 400-year intervals to allow the glacier to
approach a new steady state configuration. As the simulated
glacier terminus neared the LGM terminus position in Kings

Canyon, the ELA was lowered in 10-m intervals in another
simulation.
[30] During this ELA-lowering experiment the glacier

margins monotonically descended down Kings Canyon
and neighboring valleys (Figure 8; 2-D and 3-D movies
of this ELA-lowering experiment are provided in the
auxiliary material1). As glaciers enlarged during steady-
ELA intervals, ice thickening increased surface elevations,
thereby increasing the accumulation area of each glacier.
Correctly accounting for this change in surface height with
ice thickening is one challenge of methods of determining
paleoclimate that rely upon the accumulation area ratio. The
maximum error in accumulation and ablation areas, which
would only be made by an overly simplistic calculation of
the AAR that neglected ice thickness entirely, is given by the
difference between the green and black lines in Figure 8c.
While the actual AAR based upon an ELA at the ice surface
is 0.68, the AAR calculated using the bedrock surface is
0.59.
[31] The intrinsic, or e-folding, timescale (t, the time it

takes for the distance from steady state to decrease by a
factor of 1/e) of the glacier footprint area determines the
ability of this lowering schedule to reach steady state
between lowering events. Prior to running this experiment,
we determined an approximate value for t by fitting an
exponential function Afp � A0

fp = cdA (1 � e�(t �t0)/t) to the
glacier footprint area (Afp) following an instantaneous
lowering of the ELA at t = t0 (Figure 9). Here cdA is the
long timescale change in footprint area. However, the
response time of a glacier to climate change is a function
of its size, as well as the climate and the topography over
which it passes. This is reflected in the change in intrinsic
timescale as the glacier grows (Figure 9). Initially, the
characteristic timescale is only a decade or two, but as the
glacier enlarges the timescale increases. After an initial
increase in timescale to approximately 50 years, the time-
scale fluctuates about that value, likely reflecting peculiar-
ities of the terrain. The imposed 400-year (8t) schedule of
ELA lowering should allow the glacier footprint area to
have achieved 99.97% of its steady state area before the
next ELA lowering event; hence we are assured that the
terminus reaches the steady state position associated with
each ELA.
[32] For each imposed ELA, the terminus was located by

identifying the lowest cell within Kings Canyon containing
ice greater than 1 m thick (Figure 10a). The minimum
distance from this cell to the observed LGM terminus
position (star in Figure 1) was then determined to assess
the goodness of fit of the simulated glacier, with its
corresponding ELA, to the LGM Kings Canyon glacier
(Figure 10b). Below 3200 m the ELA was lowered in 10 m
increments; the best-fitting ELA was 3170 m.
[33] This methodology for determining the paleo-ELA

compares the observed moraine positions with an ice
margin that reflects a climate that is steady over several
hundred years. By allowing the simulated glaciers to reach
the maximum possible ice extent for the imposed climate,
this methodology likely causes an underestimation of the
severity of the climate that produced the observed moraines.

1Auxiliary material is available at ftp://ftp.agu.org/apend/jf/
2005jf000365.
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[34] Inspection of the eastern and western glacial foot-
prints with an imposed uniform ELA of 3170 m reveals that
much of the strong asymmetry in glacial lengths is due to
the topography. Taking the longest straight-line distance
from the terminus to the farthest reaches of the accumula-
tion zone as the glacier length, at an ELA of 3170 m, the
Kings Canyon glacier is 37.8 km long. In contrast, the

average simulated eastern flank glacier length is 5.9 ±
2.1 km (mean ± std. dev.). By comparison, the mean
observed LGM eastern flank glacier length extracted from
Moore’s [2000] map of LGM glacial extents is 5.1 ± 2.0 km;
the real glaciers were shorter than those we have simulated
with a uniform climate. Roughly 97% of the 32.7 km
difference in glacier lengths between eastern and western

Figure 8. Steady state glacier extents for three ELA values: (a) 3500 m, (b) 3350 m, and (c) 3170 m.
Blue line indicates measured LGM glacial extents extracted from Moore [2000]; black line indicates the
ELA at the ice surface; green line indicates the ELA at the bedrock surface. Simulation space does not
encompass the full drainage areas of canyons to the north of South Fork Kings Canyon, resulting in large
misfits.
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flanks, or 85% of the ratio of glacier lengths, can be attributed
to topographic asymmetry, with no asymmetry in climate.
However, most of the simulated eastern flank glaciers over-
shoot their measured positions: 80% of the simulated glaciers
exceed their LGM termini positions by an average of 1210m.
[35] In this numerical model, ice motion due to sliding is

expressed by equation (9), which sets a typical and maxi-
mum sliding velocity by introducing two parameters, the
characteristic gravitational driving stress (tc) and the char-
acteristic sliding velocity (Uc). Factor of 2 changes in either
of these parameters produced only 10- to 20-m changes in
the predicted LGM ELA. Despite the poor constraint on the
magnitude and physics of sliding, that the predicted ELA is
insensitive to the sliding parameters is encouraging for the
use of this technique in predicting paleoclimate. In arriving
at our final formulation of the sliding rule, we tested many
variants. In general, the effects on the resulting glacial
shapes were minor. The robustness of this model to the
details of the sliding formulation reflects the partitioning of
the total ice motion between sliding and deformation, both
of which reduce the driving stress by transporting ice more
rapidly through areas of locally high gravitational driving
stress. Ice motion by these two processes always transports
ice in the direction that lowers the local ice surface slope
(hence gravitational driving stress); in our formulations of
these processes, as in most formulations, the magnitude of
this transport is greater where the gravitational driving stress
is greater. If sliding is reduced, the resulting increase in ice
thickness and ice surface slope increase the gravitational
driving stress, which in turn increases deformation, and vise

Figure 9. Kings Canyon glacier footprint area (dots) in a simulation in which the ELA (blue line) was
decreased in 50-m steps at 400-year intervals. The intrinsic timescale of the glacier dynamics is given (in
years) for each ELA interval, calculated assuming an exponential approach to steady state (red lines).
Inset shows evolution of the glacier footprint area after one 50-m-step lowering of the imposed ELA. The
intrinsic timescale for each interval is found by fitting the equation shown (bold red curve).

Figure 10. Termini elevations and relative positions in
Experiments 1 and 2. (a) Kings Canyon terminus elevation
(circles) and mean of eastern flank termini elevations
(asterisks) as a function of imposed equilibrium line
altitude. Kings Canyon LGM terminus elevation at �1300
m (dashed line); mean of observed eastern flank termini
elevations at �2300 m (dotted line). (b) Mean straight line
distance from the observed termini to the simulated termini
positions on the eastern flank (asterisks) and in Kings
Canyon on the western flank (circles) [Moore, 2000].
Positive and negative distances indicate simulated termini
that have respectively overshot or not reached their LGM
moraines. Dashed line indicates zero mean distance.
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versa. The simulated glacial extent is therefore largely
immune to the details of the ice transport algorithms.
[36] The sensitivities of the predicted LGM ELA to the

imposed mass balance gradient,rbz, and the maximummass
balance, bz

max, were also explored; factor of two changes in
either of these parameters resulted in �100- to �200-m
changes in the predicted ELA. Increasing bz

max raises the
ELA necessary for the simulated glacier to reach the observed
LGM terminus position by increasing the total accumulation.
Increasingrbz lowers the predicted LGMELA. This reflects
the capping of mass balance at high elevations, making the
increase in total ablation greater than the increase in total
accumulation; the predicted ELA must therefore drop to
bolster the accumulation. That the simulated glacier extents
show only modest sensitivity to these climate parameters
indicates that the predictions of ELA are fairly robust;
however, because some sensitivity exists this technique could
be useful for determining values for these other climate
parameters if the ELA can otherwise be constrained. As
noted by Plummer and Phillips [2003], different climate
scenarios that produce the same glacial extents in a single
valley can be distinguished by considering the glacial extents
in multiple valleys because individual valleys respond dif-
ferently to a single climate forcing; therefore, all three climate
parameters could possibly be constrained by simultaneously
finding the best-fitting glacial extents within several valleys.

3.2. Experiment 2: Eastern Flank Equilibrium
Line Altitude Lowering

[37] We now seek an explanation for the remaining
asymmetry in glacial lengths, i.e., the roughly 1-km over-
shoot of simulated eastern glacier termini. We hypothesize
that the overshoot in Experiment 1 can be explained by a
higher average ELA on the eastern flank. We performed the
ELA-lowering procedure shown in the first experiment on
the eastern flank to determine how much higher the ELA
would need to be on the eastern flank to account for the
shorter observed LGM glaciers as compared with those
simulated in Experiment 1. We ran this simulation only on
the eastern half of the domain in Figure 1. Because the
average intrinsic timescale for modeled eastern flank gla-
ciers (�25 years) is about half that of the South Fork Kings
Canyon glacier (�50 years), we reduced the time between
ELA-lowering events to 200 years. To improve resolution
of the estimated ELA, we reduced the ELA step size to
20 m, but made no attempt to reduce the step size further as
the termini approached their LGM positions.

[38] The best-fitting ELA for each glacier on the eastern
flank is plotted in Figure 11 as a function of distance north
of the southernmost glacier terminus. The predicted ELA at
the latitude of Kings Canyon is 3290 ± 60 m, the range
deriving from the variability between independent glaciers
on the eastern flank. The east-west asymmetry in glacier
length that cannot be accounted for by topography can be
accounted for by an east side mean ELA that is 120 m
higher than the western flank value of 3170 m.
[39] Assuming an accumulation area ratio (AAR) of 0.65,

the eastern flank LGM ELA at the latitude of Kings Canyon,
inferred from moraine evidence, is 3110 ± 20 m [Gillespie,
1991]. While assuming an AAR of 0.65 is standard for
determining paleo-ELAs [e.g., Meierding, 1982; Porter,
1975; Gillespie, 1991; Burbank, 1991], it neglects the sub-
stantial variation in AAR observed in extent glaciers, which
for alpine glaciers is typically between 0.5 and 0.8 [Meier and
Post, 1962]. The mean AAR for simulated LGM glaciers on
the eastern flank is 0.61 ± 0.05, close to the typically assumed
value of 0.65, but it ranges from 0.47 to 0.69. In this
simulation, the wide range of AAR values is due entirely to
local topography, as climate, through the mass balance
function, is specified to be uniform. For a glacier at steady
state, the average accumulation rate times the area of the
accumulation zone must equal the average ablation rate times
the area of the ablation zone. For a given mass balance
profile, the detailed distribution of elevations in a particular
valley influences the AAR at steady state by enforcing this
balance [e.g., Anderson et al., 2006].

3.3. Experiment 3: Orographic Precipitation—Positive
Degree-Day Melt

[40] In the Experiments 1 and 2 we assumed a very
simple mass balance function that required three high level
parameters (ELA, rbz, and bz

max) that are black boxes
encapsulating effects of temperature, precipitation and other
more fundamental climate variables. In a third numerical
experiment, we break open those black boxes by explicitly
calculating the positive (accumulation) and negative (abla-
tion) components of the mass balance field using the
orographic precipitation and positive degree-day melt algo-
rithms described in section 2.2.2. The objective of this
experiment was to determine if the �1-km overshoot of
the observed eastern glacial extents in Experiment 1 and the
east-west differences in ELA deduced from experiment 2
could be explained by a physically realizable orographic
precipitation shadow.
[41] We first calibrated the orographic model by fitting the

parameters Ca (scales topographically derived precipitation)
andDx (scales downwind advection) in an attempt to produce
the modern pattern of precipitation across the Sierra Nevada
(Figures 6 and 12) (WRCC, http://www.wrcc.dri.edu/sum-
mary/climsmsca.html) (fitted values: Ca = 5.9, Dx = 3.5 km).
On the upwind, western, side of the range the simulated
precipitation agrees substantially with the modern recorded
precipitation. On the downwind, eastern, side the gross
characteristics of the precipitation shadow are simulated
quite well; however, the simulated shadow predicts an even
lower precipitation than that observed, which may indicate
that the modern precipitation on the eastern flank is
not entirely orographically derived (e.g., summer monsoon
precipitation).

Figure 11. Predicted LGMELAs for glaciers on the eastern
flank of the Sierra Nevada range east of Kings Canyon. The
ELA at the latitude of Kings Canyon is 3290 ± 60 m, with a
north-to-south ELA gradient of 2.4 ± 2.4 m/km.
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[42] In this experiment, we ran a suite of simulations in
which different combinations of temperature and precipita-
tion anomalies were imposed and glaciers were permitted to
reach their steady state sizes; other variables such as wind
velocity were not explored. Temperature anomalies were
expressed as absolute temperature changes from the modern
temperature; precipitation anomalies were prescribed as a
multiple of the modern number of storms per year. We note
that increasing the number of storms linearly increases the
total precipitation and roughly linearly increases the solid
phase precipitation; however, it does not proportionately
increase the net mass balance (precipitation minus melt)
because it does not affect the melt rate.
[43] We report the precipitation/temperature pairings that

produced glacier termini positions in Kings Canyon that
best match the observed LGM position (Figure 13a). All of
the temperature/precipitation pairs along the curve in
Figure 13a reproduce the observed 37.8 km long glacier
in Kings Canyon. With no change in precipitation, a
lowering of temperature by 7.8�C is required to reproduce
the LGM glacial extents in Kings Canyon; with no change
in temperature, �11 times the modern number of storms is
required. When assuming no increase in precipitation,
Plummer and Phillips [2003] estimated an LGM tempera-
ture depression of 6.5�C using a similar 2-D modeling
technique in Bishop Creek on the eastern flank. The shifted
squared relationship indicates that the effect of temperature
lowering is greater than that of increasing precipitation. This
may result from the multiplicative effect of temperature

decrease on the mass balance: first, a greater fraction of the
precipitation falls in the solid phase (Figure 14), and second,
the melt rates decrease in the accumulation and ablation
zones.
[44] A simulation with 11.3 times the number of storms

produced a net mass balance in the accumulation zone that
was 3–4 times the mass balance with no precipitation
anomaly and a 7.8�C temperature depression. Although
these two scenarios produce a similar glacier footprint in
Kings Canyon, the high storm frequency glacier is �30%
thicker on average, slides on average �50% faster, and has
on average 150% greater internal deformation. However,
these average differences are dominated by large regions of
thin ice; for example, the centerline thickness in the main
canyon differs by less than 3%. These large increases in
velocity are reasonable since internal deformation goes as
the fourth power of ice thickness. The expected threefold to
fourfold increase in ice discharge from the accumulation

Figure 12. Average net mass balance versus elevation for
modern and LGM (�5.6�C, 1.9 times the modern number
of storms) climate parameters (dashed and solid colored
lines, respectively). Straight line indicates the east and west
mass balance as determined from Experiments 1 and 2.
Curves are derived from the orographic precipitation and
positive degree day melt models used in Experiment 3. Red
and blue lines indicate mass balance on the eastern and
western flanks respectively. The 1 standard deviation error
bars indicate the range of mass balances in the model at that
elevation. At high elevations, the eastern and western
average balance curves level off at 0.9 m/yr and 1.2 m/yr,
respectively. Horizontal dotted line indicates zero net mass
balance.

Figure 13. (a) Multiple of the modern number of storms
versus temperature anomaly (DT) from the modern
temperature. The curve indicates a shifted square fit through
the x-y pairs (circles) that produce glacial extents in Kings
Canyon matching observed LGM extents [Moore, 2000].
(b) Mean distance from the simulated termini to the
observed LMG termini on the eastern flank, with positive
and negative distances indicting simulated termini that
respectively overshoot or undershoot their observed LGM
positions.

Figure 14. Solid phase precipitation in Kings Canyon as a
function of temperature anomaly normalized by the
precipitation at zero temperature depression (modern
temperature). Decreasing the temperature increases the total
precipitation that falls in the solid phase.
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zone to the ablation zone results from a �75% greater total
ice velocity, a �30% greater ice thickness, and a �35%
greater glacier width at the ELA, which is 200 m lower in
the no-precipitation anomaly scenario. This additional ice
transfer is required at steady state in order to balance the
higher mass balance gradient (also known as the activity
index [Meier, 1961]) that this climate scenario produces.
These end-member climate scenarios therefore result in
glaciers that are significantly different in character despite
their similar footprint. We note that the higher precipitation
rate glacier would presumably erode the landscape more
quickly, as erosion is intimately tied to sliding rates.
[45] While the moraine position in Kings Canyon alone

does not constrain the LGM temperature/precipitation
anomaly pair, the many glaciers on the eastern flank allow
us to disentangle which pair is most appropriate for the
LGM climate. We seek the anomaly pair that minimizes the
mean distance between the simulated and the observed
eastern flank termini (Figure 13b). The distance between a
simulated terminus and an observed terminus was consid-
ered positive if the simulated glacier overshot the observed
LGM terminus. The climate scenario that best fits the LGM
termini positions of east-flank glaciers is one in which
precipitation is 1.9 times the modern rate and temperature
is depressed by 5.6�C (Figure 13b).
[46] Our paleoclimate results can be compared to Experi-

ments 1 and 2, as well as earlier studies, by determining the
ELA from the mass balance field (Figure 12). The best-
fitting climate scenario results in an LGM ELA on the
western flank of 2980 m, while on the eastern flank it is
3200 m. This western flank value is �200 m lower than the
ELA that produced the best-fitting Kings Canyon glacier in
Experiment 1 (3170 m), and reflects a lower average mass
balance in the accumulation zone. In Experiment 1, the net
mass balance above �3400 m was set by the 2 m/yr
imposed maximum mass balance, bz

max, while in this exper-
iment the mean net mass balance above �3400 m is only
�1.2 m/yr. The average accumulation zone mass balances
in Kings Canyon differ by about the same factor: 0.8 m/yr
and 0.5 m/yr for Experiments 1 and 3, respectively. The
lower accumulation zone mass balance of Experiment 3
demands a lower ELA to achieve the same steady state
glacier extents. The �90 m discrepancy between ELA
estimates for eastern flank glaciers in Experiments 2
(ELA = 3290 m) and 3 (ELA = 3200 m) is smaller in part
because the higher eastern flank ELA results in less of the
total accumulation area (only elevations above �3500 m)
being limited by the maximum mass balance, bz

max, which is
the primary cause of the change in predicted ELA on the
western flank.

3.4. Experiment 4: North-South Temperature Gradient

[47] The orographic and positive degree-day algorithms
used in Experiment 3, which explicitly include temperature
through the saturation vapor pressure, the phase of the
precipitation, and the magnitude of the annual melt, can
be used to assess spatial variation in temperature. In a final
numerical experiment, we ran a series of simulations in
which a range of north-south gradients in temperature were
imposed; in each simulation the mean annual temperature
declined from south to north with a prescribed gradient. The
objective of this experiment was to determine the north-

south temperature gradient that best matched the glacier
extents on the eastern flank. We used the mean of the
distances between the simulated termini and the observed
termini as a measure of how well the temperature gradient
matched the actual gradient. The best fitting temperature
gradient is 3.5 ± 2.5�C/�latitude north-to-south.
[48] For comparison with both observations and Experi-

ment 2, the ELA gradient from north-to-south on the eastern
flank in this experiment was determined from the mass
balance pattern in the best fitting simulation. The resulting
north-to-south ELA gradient of 3.7 ± 0.3 m/km (this error
range only reflects ELA variation within the best fitting
simulation) is roughly consistent with a previous estimate of
the early Tioga ELA gradient of 3.1 ± 0.2 m/km [Gillespie,
1991], which is based upon the AAR method. The AAR
method has also been used to infer the north-to-south ELA
gradient during the late Tioga glaciation of the Sierra
Nevada (2.2±1.0 m/km) [Gillespie, 1991] and the modern
ELA gradient (2.0 m/km) [Burbank, 1991].
[49] In Experiment 2 we solved for the best-fitting ELA

in each valley independently; the ELA gradient along
the eastern flank found through linear regression is
2.4±2.4 m/km (Figure 11). Although the predicted value
is in agreement with estimates from AAR-based reconstruc-
tions [Gillespie, 1991; Burbank, 1991] and from Experi-
ment 4, there is substantial uncertainty in our estimate of the
north-south gradient in ELA. Experiments 2 and 4 both fail
to tightly constrain the temperature gradient largely because
of the short segment of range encompassed in this study
(50 km versus �400 km in other studies [Gillespie, 1991]);
the systematic decrease in termini elevations owing to
decline in temperature from south to north is small com-
pared to the large misfit between simulated and observed
termini owing to physics not included in this model or error
in the observed termini positions.

4. Discussion and Conclusions

[50] The primary objectives of this study were to deter-
mine how much of the east-west difference in glacier length
in the Sierra Nevada results from asymmetry in topography
and how much results from asymmetry in climate, and more
generally to further demonstrate the utility of 2-D numerical
glacier simulations in reconstruction of paleoclimate. In the
first numerical experiment, we determined that the asym-
metry in topography accounts for 97% of the east-west
difference in LGM glacier lengths. Even within the Sierra
Nevada, which receives abundant orographic precipitation
and casts one of the more pronounced rainshadows in the
world, topographic asymmetry exerts the primary control on
glacier lengths.
[51] Although the ELA is often used as a single proxy for

past climate in glaciated areas, variations in ELA are
ambiguous because a change in ELA could result from
changes in any number of physical parameters (e.g., winter
or summer temperature, wind speed, precipitation). In
contrast, more fundamental climate parameters such as
precipitation and temperature can be used to drive physi-
cally based glacial models with a more appropriate spatially
variable climate. In Experiment 3 we show that a simple,
orographically influenced pattern of precipitation can ac-
count for the �1-km overshoot of the observed eastern flank
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glacial extents in Experiment 1. Using the natural experi-
ment of the east and west-draining valleys in the Sierras, in
which tens of glaciers allow us to constrain spatial variabil-
ity in climate, models run in Experiment 3 suggest that the
pattern of LGM moraines can be best explained by a 5.6�C
lowering of temperature and a doubling of the number of
storms. In addition, while less well constrained given the
latitudinal extent of the calculation space, models run in
Experiment 4 suggest a 3.5�C/�latitude north-to-south tem-
perature gradient during the LGM and a north-to-south ELA
gradient of 3.7 m/km. However, over this short segment of
the Sierra Nevada, the majority of the ELA variation likely
results from the effect of topography on local precipitation
and melt, while the latitudinal temperature gradient plays a
minor role.
[52] Our result of 5.6�C cooling and twice the precipita-

tion for LGM conditions is reasonable when compared with
previous estimates of the LGM climate. Previous climate
mass balance modeling suggests that Sierra Nevada glaciers
were unique among western North American glaciers in that
they required increased precipitation to reach LGM termini
positions [Hostetler and Clark, 1997]. Climate models of
western North America indicate that during the LGM the jet
stream was deflected southward by polar high-pressure
systems resulting from expansion of the Laurentide ice
sheet and mountain glaciers [e.g., Bartlein et al., 1998].
The southward deflection of the mean jet stream position
resulted in more frequent winter storms that increased
precipitation across much of western and southwestern
North America [Thompson et al., 1993; Bartlein et al.,
1998]. Additionally, lower LGM temperatures would have
extended the accumulation season and shortened the abla-
tion season [Leonard, 1989]. To the west of the Sierra
Nevada, marine records suggest intervals of increased
precipitation in the Coast Ranges during glacial and early
interglacial periods [Robert, 2004]. East of the range, floral
assemblages in packrat middens around Yucca Mountain,
Nevada, indicate a mean LGM temperature depression of
7.5�C and at least a 2.4-fold increase in precipitation
[Thompson et al., 1999]. The presence of large lakes in
the Great Basin region during glacial periods indicates a
regionally cooler and wetter climate [e.g., Smith and Street-
Perrott, 1983; Benson and Thompson, 1987; Benson et al.,
1990]. Water balance modeling indicates that lake level
changes were driven more by variations in precipitation
than in temperature [Phillips et al., 1992]. Further east,
former lake levels in the Estancia basin, New Mexico,
suggest a mean LGM temperature depression of 5.0�C
and a 2.0-fold increase in precipitation [Menking et al.,
2004]. That our results closely match these independent
estimates of LGM temperature and precipitation increases
our confidence in the model.
[53] We argue that the insensitivity of this model to the

details of the ice motion physics is due to the nature of
glaciers. First, two ice transport processes, sliding and
internal deformation, act to reduce the gravitational driving
stress, which is the force causing ice motion. Reduction of
the role of one process by modification of its formulation or
its parameters enhances the role of the other process by
effectively raising the driving stress, ultimately leading to
only a small modification in ice extent. Second, the extent
of glaciation under a given climate and for a given topog-

raphy is as much a result of strong feedbacks between the
topography, the glacier that grows within it, and the climate
as it is to the details of the ice physics. For example, as a
glacier occupies more of its valley it raises the surface
elevation at which the climate boundary condition is being
applied, both reducing the melt rate and increasing the
precipitation. This increases the accumulation area, causing
the glacier to grow further. Even the simplest model that
contains some reasonable prediction of ice thickness will
capture the essence of this important feedback. However,
other feedbacks, for example between hydrology and ice
motion, or between ice surface height and radiation shad-
owing, are not as yet incorporated in our model. While
further refinement is therefore needed, we argue that the
glacier model in its present state is already a powerful tool
for addressing paleoclimate questions in topographically
complex terrain.

Appendix A

[54] A number of formulations have been used to model
basal sliding, all of which compute the sliding velocity from
the basal shear stress, tb. A typical formulation is [e.g.,
Fastook and Chapman, 1989; Paterson, 1994; Plummer
and Phillips, 2003]

Us ¼ fBtmb ; ðA1Þ

in which f is a fraction between 0 and 1 that partitions the
ice motion between deformation and sliding, B is a constant,
and the exponent m is generally taken to be 2 [Paterson,
1994].
[55] One formulation that acknowledges the role of gla-

cial hydrology scales the sliding velocity inversely with the
effective pressure (N = ice pressure � water pressure) at the
bed [e.g., Budd et al., 1979; Bindschadler, 1983; Kessler
and Anderson, 2004],

Us ¼ Btmb N
�p: ðA2Þ

In this formulation sliding speed can go infinite when N = 0.
While this may resemble fast sliding events, in nature the
sliding velocity remains finite even when the water pressure
exceeds the ice pressure, as longitudinal coupling to
upstream and downstream ice inhibits sliding.
[56] Another formulation that incorporates the hydrology,

but which may give more realistic behavior at high water
pressure, scales the sliding velocity by the flotation fraction
(water pressure over ice pressure) [Marshall et al., 2005],

Us ¼ B
Pw

Pi

tb: ðA3Þ

Here the sliding velocity is linearly proportional to the basal
shear stress (m = 1 in equations (A1) and (A2)). The sliding
speed scales linearly with the water pressure. Given our
limited knowledge of the sliding process in many cases this
simple and elegant formulation is an appealing alternative.
[57] A sliding law that incorporates glacial hydrology

may be appropriate for investigating the short term varia-
tions in sliding velocity; however, its inclusion in a longer
timescale model, such as presented here, is difficult to
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justify given that the water table is not a simple function of
slowly changing geometrical parameters (i.e., ice thickness),
but instead entails complex interactions between the glacier
and its seasonally variable hydrologic system (see for
example simulations from Kessler and Anderson [2004],
and the formulations of Flowers and Clarke [2002a,
2002b]). In addition, if sliding varies nonlinearly with the
effective pressure then a simple time average of the water
pressure is insufficient.
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